PIXE based, Machine-Learning (PIXEL) supported workflow for glass fragments classification.
Talanta
; 234: 122608, 2021 Nov 01.
Article
em En
| MEDLINE
| ID: mdl-34364421
This paper presents a structured workflow for glass fragment analysis based on a combination of Elemental Analysis using PIXE and Machine Learning tools, with the ultimate goal of standardizing and helping forensic efforts. The proposed workflow was implemented on glass fragments received from the Israeli DIFS (Israeli Police Force's Division of Identification and Forensic Sciences) that were collected from various vehicles, including glass fragments from different manufacturers and years of production. We demonstrate that this workflow can produce models with high (>80%) accuracy in identifying glass fragment's origins and provide a test-case demonstrating how the model can be applied in real-life forensic events. We provide a standard, reproducible methodology that can be used in many forensic domains beyond glass fragments, for example, Gun Shot Residue, flammable liquids, illegal substances, and more.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Aprendizado de Máquina
/
Vidro
Idioma:
En
Revista:
Talanta
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Israel
País de publicação:
Holanda