Your browser doesn't support javascript.
loading
Interfacial Engineering of Hybrid Polydopamine/Polypyrrole Nanosheets with Narrow Band Gaps for Fluorescence Sensing of MicroRNA.
Yang, Mengnan; Wang, Zhenqiang; Ding, Tao; Tang, Jia; Xie, Xiyue; Xing, Yuxin; Wang, Lu; Zhang, Jixi; Cai, Kaiyong.
Afiliação
  • Yang M; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
  • Wang Z; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
  • Ding T; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
  • Tang J; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
  • Xie X; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
  • Xing Y; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
  • Wang L; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
  • Zhang J; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
  • Cai K; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
ACS Appl Mater Interfaces ; 13(35): 42183-42194, 2021 Sep 08.
Article em En | MEDLINE | ID: mdl-34435770
ABSTRACT
Nanoquencher-based biosensors have emerged as powerful tools for the detection of tumor markers, where challenges in efficiently docking the π-electron interaction interface toward nucleic acid probes containing π-electron-rich units of bases and fluorescent dyes still remain. Herein, we present hybrid polydopamine/polypyrrole nanosheets (PDA-PPy-NS) with π electron coupling and ultranarrow band gap (0.29 eV) by interfacial engineering of polymer hybrids at the nanoscale. PDA-PPy-NS were first prepared through oxidant-induced polymerization of pyrrole on PDA nanosheets. By utilizing fluorescent-dye-labeled single-stranded DNA as a probe, the hybrid nanoquencher showed ultrahigh fluorescence quenching ability, i.e., a Cy5-ssDNA/nanoquencher mass ratio of 36.9 under the complete quenching condition, which is comparable to that of graphene oxide. It was demonstrated that the energy level coupling of nanosheets and nucleic acid dye (Cy5) was the key factor contributing to the efficient photoinduced electron transfer (PET). Subsequently, the nanoquencher/DNA probe was proved to possess superior sensitivity and selectivity for efficient and reliable detection of miRNA-21 with a detection limit of 23.1 pM. Our work proves that the π-electron-rich biosensor interface can significantly enhance the PET efficiency, providing a theoretical basis for developing novel high-performance sensors.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Pirróis / Espectrometria de Fluorescência / Técnicas Biossensoriais / MicroRNAs / Nanoestruturas / Indóis Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Pirróis / Espectrometria de Fluorescência / Técnicas Biossensoriais / MicroRNAs / Nanoestruturas / Indóis Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China
...