Synthesis of Novel Methyl 7-[(Hetero)arylamino]thieno[2,3-b]pyrazine-6-carboxylates and Antitumor Activity Evaluation: Effects in Human Tumor Cells Growth, Cell Cycle Analysis, Apoptosis and Toxicity in Non-Tumor Cells.
Molecules
; 26(16)2021 Aug 10.
Article
em En
| MEDLINE
| ID: mdl-34443411
Several novel methyl 7-[(hetero)arylamino]thieno[2,3-b]pyrazine-6-carboxylates were synthesized by Pd-catalyzed C-N Buchwald-Hartwig cross-coupling of either methyl 7-aminothieno[3,2-b]pyrazine-6-carboxylate with (hetero)arylhalides or 7-bromothieno[2,3-b]pyrazine-6-carboxylate with (hetero)arylamines in good-to-excellent yields (50% quantitative yield), using different reaction conditions, namely ligands and solvents, due to the different electronic character of the substrates. The antitumoral potential of these compounds was evaluated in four human tumor cell lines: gastric adenocarcinoma (AGS), colorectal adenocarcinoma (CaCo-2), breast carcinoma (MCF7), and non-small-cell lung carcinoma (NCI-H460) using the SRB assay, and it was possible to establish some structure-activity relationships. Furthermore, they did not show relevant toxicity against a non-tumor cell line culture from the African green monkey kidney (Vero). The most promising compounds (GI50 ≤ 11 µM), showed some selectivity either against AGS or CaCo-2 cell lines without toxicity at their GI50 values. The effects of the methoxylated compounds 2b (2-OMeC6H4), 2f and 2g (3,4- or 3,5-diOMeC6H3, respectively) on the cell cycle profile and induction of apoptosis were further studied in the AGS cell line. Nevertheless, even for the most active (GI50 = 7.8 µM) and selective compound (2g) against this cell line, it was observed that a huge number of dead cells gave rise to an atypical distribution on the cell cycle profile and that these cells were not apoptotic, which points to a different mechanism of action for the AGS cell growth inhibition.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Pirazinas
/
Apoptose
/
Pontos de Checagem do Ciclo Celular
/
Antineoplásicos
Limite:
Humans
Idioma:
En
Revista:
Molecules
Assunto da revista:
BIOLOGIA
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Portugal
País de publicação:
Suíça