Your browser doesn't support javascript.
loading
Intrinsic properties of primary hippocampal neurons contribute to PIP2 depletion during nsEP-induced physiological response.
Tolstykh, Gleb P; Valdez, Christopher M; Montgomery, Noel D; Cantu, Jody C; Sedelnikova, Anna; Ibey, Bennett L.
Afiliação
  • Tolstykh GP; General Dynamics Information Technology, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA. Electronic address: gleb.tolstykh.ctr@us.af.mil.
  • Valdez CM; Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA.
  • Montgomery ND; Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA.
  • Cantu JC; General Dynamics Information Technology, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA.
  • Sedelnikova A; SAIC, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA.
  • Ibey BL; Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA.
Bioelectrochemistry ; 142: 107930, 2021 Dec.
Article em En | MEDLINE | ID: mdl-34450563
High-energy, short-duration electric pulses (EPs) are known to be effective in neuromodulation, but the biological mechanisms underlying this effect remain unclear. Recently, we discovered that nanosecond electric pulses (nsEPs) could initiate the phosphatidylinositol4,5-bisphosphate (PIP2) depletion in non-excitable cells identical to agonist-induced activation of the Gq11 coupled receptors. PIP2 is the precursor for multiple intracellular second messengers critically involved in the regulation of intracellular Ca2+ homeostasis and plasma membrane (PM) ion channels responsible for the control of neuronal excitability. In this paper we demonstrate a novel finding that five day in vitro (DIV5) primary hippocampal neurons (PHNs) undergo significantly higher PIP2 depletion after 7.5 kV/cm 600 ns EP exposure than DIV1 PHNs and day 1-5 (D1-D5) non-excitable Chinese hamster ovarian cells with muscarinic receptor 1 (CHO-hM1). Despite the age of development, the stronger 15 kV/cm 600 ns or longer 7.5 kV/cm 12 µs EP initiated profound PIP2 depletion in all cells studied, outlining damage of the cellular PM and electroporation. Therefore, the intrinsic properties of PHNs in concert with nanoporation explain the stronger neuronal response to nsEP at lower intensity exposures. PIP2 reduction in neurons could be a primary biological mechanism responsible for the stimulation or inhibition of neuronal tissues.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Membrana Celular / Fosfatos de Fosfatidilinositol / Hipocampo / Neurônios Limite: Animals Idioma: En Revista: Bioelectrochemistry Assunto da revista: BIOQUIMICA Ano de publicação: 2021 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Membrana Celular / Fosfatos de Fosfatidilinositol / Hipocampo / Neurônios Limite: Animals Idioma: En Revista: Bioelectrochemistry Assunto da revista: BIOQUIMICA Ano de publicação: 2021 Tipo de documento: Article País de publicação: Holanda