Your browser doesn't support javascript.
loading
Solution-Grown Chloride Perovskite Crystal of Red Afterglow.
Zheng, Wei; Li, Xiuling; Liu, Nianqiao; Yan, Shao; Wang, Xiaojia; Zhang, Xiangzhou; Liu, Yeqi; Liang, Yanjie; Zhang, Yuhai; Liu, Hong.
Afiliação
  • Zheng W; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China.
  • Li X; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China.
  • Liu N; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China.
  • Yan S; School of Physics and Technology, University of Jinan, Jinan, 250022, Shandong, China.
  • Wang X; Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, P. R. China.
  • Zhang X; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China.
  • Liu Y; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China.
  • Liang Y; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China.
  • Zhang Y; Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, P. R. China.
  • Liu H; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China.
Angew Chem Int Ed Engl ; 60(46): 24450-24455, 2021 Nov 08.
Article em En | MEDLINE | ID: mdl-34453771
We report the growth of a halide-based double perovskite, Cs2 Nax Ag1-x InCl6 :y%Mn, via a facile hydrothermal reaction at 180 °C. Through a co-doping strategy of both Na+ and Mn2+ , the as-prepared crystals exhibited a red afterglow featuring a high color purity (ca. 100 %) and a long duration time (>5400 s), three orders of magnitude longer than those solution-processed organic afterglow crystals. The energy transfer (ET) process between self-trapped excitons (STE) and activators was investigated through time-resolved spectroscopy, which suggested an ET efficiency up to 41 %. Importantly, the nominal concentration of dopants, especially in the case of Na+ , was found a useful tool to control both energy level and number distribution of traps. Cryogenic afterglow measurements suggested that the afterglow phenomenon was likely governed by thermal-activated exciton diffusion and electron tunneling process.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China País de publicação: Alemanha