Your browser doesn't support javascript.
loading
A data-driven methodology towards evaluating the potential of drug repurposing hypotheses.
Prieto Santamaría, Lucía; Ugarte Carro, Esther; Díaz Uzquiano, Marina; Menasalvas Ruiz, Ernestina; Pérez Gallardo, Yuliana; Rodríguez-González, Alejandro.
Afiliação
  • Prieto Santamaría L; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain.
  • Ugarte Carro E; ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain.
  • Díaz Uzquiano M; Ezeris Networks Global Services S.L., 28028 Madrid, Spain.
  • Menasalvas Ruiz E; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain.
  • Pérez Gallardo Y; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain.
  • Rodríguez-González A; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain.
Comput Struct Biotechnol J ; 19: 4559-4573, 2021.
Article em En | MEDLINE | ID: mdl-34471499
Drug repurposing has become a widely used strategy to accelerate the process of finding treatments. While classical de novo drug development involves high costs, risks, and time-consuming paths, drug repurposing allows to reuse already-existing and approved drugs for new indications. Numerous research has been carried out in this field, both in vitro and in silico. Computational drug repurposing methods make use of modern heterogeneous biomedical data to identify and prioritize new indications for old drugs. In the current paper, we present a new complete methodology to evaluate new potentially repurposable drugs based on disease-gene and disease-phenotype associations, identifying significant differences between repurposing and non-repurposing data. We have collected a set of known successful drug repurposing case studies from the literature and we have analysed their dissimilarities with other biomedical data not necessarily participating in repurposing processes. The information used has been obtained from the DISNET platform. We have performed three analyses (at the genetical, phenotypical, and categorization levels), to conclude that there is a statistically significant difference between actual repurposing-related information and non-repurposing data. The insights obtained could be relevant when suggesting new potential drug repurposing hypotheses.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Comput Struct Biotechnol J Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Espanha País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Comput Struct Biotechnol J Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Espanha País de publicação: Holanda