Your browser doesn't support javascript.
loading
Scale-Free Spanning Trees and Their Application in Genomic Epidemiology.
Orlovich, Yury; Kukharenko, Kirill; Kaibel, Volker; Skums, Pavel.
Afiliação
  • Orlovich Y; Faculty of Applied Mathematics and Computer Science, Belarusian State University, Minsk, Belarus.
  • Kukharenko K; Institute for Mathematical Optimization, Otto von Guericke University Magdeburg, Magdeburg, Germany.
  • Kaibel V; Institute for Mathematical Optimization, Otto von Guericke University Magdeburg, Magdeburg, Germany.
  • Skums P; Department of Computer Science, Georgia State University, Atlanta, Georgia, USA.
J Comput Biol ; 28(10): 945-960, 2021 10.
Article em En | MEDLINE | ID: mdl-34491104
We study the algorithmic problem of finding the most "scale-free-like" spanning tree of a connected graph. This problem is motivated by the fundamental problem of genomic epidemiology: given viral genomes sampled from infected individuals, reconstruct the transmission network ("who infected whom"). We use two possible objective functions for this problem and introduce the corresponding algorithmic problems termed m -SF (-scale free) and s -SF Spanning Tree problems. We prove that those problems are APX- and NP-hard, respectively, even in the classes of cubic and bipartite graphs. We propose two integer linear programming (ILP) formulations for the s -SF Spanning Tree problem, and experimentally assess its performance using simulated and experimental data. In particular, we demonstrate that the ILP-based approach allows for accurate reconstruction of transmission histories of several hepatitis C outbreaks.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vírus / Viroses / Biologia Computacional Tipo de estudo: Screening_studies Limite: Humans Idioma: En Revista: J Comput Biol Assunto da revista: BIOLOGIA MOLECULAR / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Belarus País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vírus / Viroses / Biologia Computacional Tipo de estudo: Screening_studies Limite: Humans Idioma: En Revista: J Comput Biol Assunto da revista: BIOLOGIA MOLECULAR / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Belarus País de publicação: Estados Unidos