Your browser doesn't support javascript.
loading
Influence of acid-sensing ion channel blocker on behavioral responses in a zebrafish model of acute visceral pain.
Adedara, Isaac A; Costa, Fabiano V; Biasuz, Eduarda; Canzian, Julia; Farombi, Ebenezer O; Rosemberg, Denis B.
Afiliação
  • Adedara IA; Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal
  • Costa FV; Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal
  • Biasuz E; Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
  • Canzian J; Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal
  • Farombi EO; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
  • Rosemberg DB; Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal
Behav Brain Res ; 416: 113565, 2022 01 07.
Article em En | MEDLINE | ID: mdl-34499933
ABSTRACT
Acid-sensing ion channels (ASICs) play significant roles in numerous neurological and pathological conditions, including pain. Although acid-induced nociception has been characterized previously in zebrafish, the contribution of ASICs in modulating pain-like behaviors is still unknown. Here, we investigated the role of amiloride, a nonselective ASICs blocker, in the negative modulation of specific behavioral responses in a zebrafish-based model of acute visceral pain. We verified that intraperitoneal injection (i.p.) of 0.25, 0.5, 1.0, and 2.0 mg/mL amiloride alone or vehicle did not change zebrafish behavior compared to saline-treated fish. Administration of 2.5% acetic acid (i.p.) elicited writhing-like response evidenced by the abnormal body curvature and impaired locomotion and motor activity. Attenuation of acetic acid-induced pain was verified at lower amiloride doses (0.25 and 0.5 mg/mL) whereas 1.0 and 2.0 mg/mL abolished pain-like responses. The protective effect of the highest amiloride dose tested was evident in preventing writhing-like responses and impaired locomotion and vertical activity. Collectively, amiloride antagonized abdominal writhing-like phenotype and aberrant behaviors, supporting the involvement of ASICs in a zebrafish-based model of acute visceral pain.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Dor Visceral / Canais Iônicos Sensíveis a Ácido / Amilorida / Locomoção Limite: Animals Idioma: En Revista: Behav Brain Res Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Dor Visceral / Canais Iônicos Sensíveis a Ácido / Amilorida / Locomoção Limite: Animals Idioma: En Revista: Behav Brain Res Ano de publicação: 2022 Tipo de documento: Article