Your browser doesn't support javascript.
loading
Accurate diagnosis of sepsis using a neural network: Pilot study using routine clinical variables.
Arriaga-Pizano, Lourdes Andrea; Gonzalez-Olvera, Marcos Angel; Ferat-Osorio, Eduardo Antonio; Escobar, Jesica; Hernandez-Perez, Ana Luisa; Revilla-Monsalve, Cristina; Lopez-Macias, Constatino; León-Pedroza, José Israel; Cabrera-Rivera, Graciela Libier; Guadarrama-Aranda, Uriel; Leder, Ron; Gallardo-Hernandez, Ana Gabriela.
Afiliação
  • Arriaga-Pizano LA; Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Gonzalez-Olvera MA; Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Ferat-Osorio EA; Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Escobar J; Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Hernandez-Perez AL; Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Revilla-Monsalve C; Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Lopez-Macias C; Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • León-Pedroza JI; Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Cabrera-Rivera GL; Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Guadarrama-Aranda U; Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Leder R; Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico.
  • Gallardo-Hernandez AG; Instituto Mexicano del Seguro Social, Centro Medico Nacional Siglo XXI, Hospital de cardiología, Mexico 0672, DF, Mexico. Electronic address: anagabygh@gmail.com.
Comput Methods Programs Biomed ; 210: 106366, 2021 Oct.
Article em En | MEDLINE | ID: mdl-34500141
BACKGROUND AND OBJECTIVES: Sepsis is a severe infection that increases mortality risk and is one if the main causes of death in intensive care units. Accurate detection is key to successful interventions, but diagnosis of sepsis is complicated because the initial signs and symptoms are not specific. Biomarkers that have been proposed have low specificity and sensitivity, are expensive, and not available in every hospital. In this study, we propose the use of artificial intelligence in the form of a neural network to diagnose sepsis using only common laboratory tests and vital signs that are routine and widely available. METHODS: A retrospective, cross sectional cohort of 113 patients from an intensive care unit, each with 48 routinely evaluated vital signs and biochemical parameters was used to train, validate and test a neural network with 48 inputs, 10 neurons in a single hidden layer and one output. The sensitivity and specificity of the neural network as a point sampled diagnostic test was calculated. RESULTS: All but one case were correctly diagnosed by the neural network, with 91% sensitivity and 100% specificity in the validation data set, and 100% sensitivity and specificity in the test data set. CONCLUSIONS: The designed neural network system can identify patients with sepsis, with minimal resources using standard laboratory tests widely available in most health care facilities. This should reduce the burden on the medical staff of a difficult diagnosis and should improve outcomes for patients with sepsis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Sepse Tipo de estudo: Diagnostic_studies / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Comput Methods Programs Biomed Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: México País de publicação: Irlanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Sepse Tipo de estudo: Diagnostic_studies / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Comput Methods Programs Biomed Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: México País de publicação: Irlanda