Your browser doesn't support javascript.
loading
LED-Based Photoacoustic NO2 Sensor with a Sub-ppb Detection Limit.
Karhu, Juho; Hieta, Tuomas; Manoocheri, Farshid; Vainio, Markku; Ikonen, Erkki.
Afiliação
  • Karhu J; Metrology Research Institute, Aalto University, Maarintie 8, FI-02150 Espoo, Finland.
  • Hieta T; Gasera Ltd., Lemminkäisenkatu 59, FI-20520 Turku, Finland.
  • Manoocheri F; Metrology Research Institute, Aalto University, Maarintie 8, FI-02150 Espoo, Finland.
  • Vainio M; Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland.
  • Ikonen E; Photonics Laboratory, Physics Unit, Tampere University, FI-33014 Tampere, Finland.
ACS Sens ; 6(9): 3303-3307, 2021 09 24.
Article em En | MEDLINE | ID: mdl-34506110
ABSTRACT
A high-sensitivity light-emitting diode (LED)-based photoacoustic NO2 sensor is demonstrated. Sensitive photoacoustic gas sensors based on incoherent light sources are typically limited by background noise and drifts due to a strong signal generated by light absorbed at the photoacoustic cell walls. Here, we reach a sub-ppb detection limit and excellent stability using cantilever-enhanced photoacoustic detection and perform a two-channel relative measurement. A white-light LED is used as a light source, and the spectrum is divided into two wavelength channels with a dichroic filter. The photoacoustic signals generated by the two wavelength channels are measured simultaneously and used to solve the NO2 concentration. The background signal is highly correlated between the two channels, and its variations are suppressed in the relative measurement. A noise level below 1 ppb is reached with an averaging time of 70 s. This is, to the best of our knowledge, the first time a sub-ppb detection limit is demonstrated with an LED-based photoacoustic NO2 sensor. As LEDs are available at a wide selection of emission wavelengths, the results show great potential for development of cost-effective and sensitive detectors for a variety of other trace gasses as well.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dióxido de Nitrogênio Tipo de estudo: Diagnostic_studies Idioma: En Revista: ACS Sens Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Finlândia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dióxido de Nitrogênio Tipo de estudo: Diagnostic_studies Idioma: En Revista: ACS Sens Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Finlândia