Your browser doesn't support javascript.
loading
Rapid prototyping of arbitrary 2D and 3D wireframe DNA origami.
Jun, Hyungmin; Wang, Xiao; Parsons, Molly F; Bricker, William P; John, Torsten; Li, Shanshan; Jackson, Steve; Chiu, Wah; Bathe, Mark.
Afiliação
  • Jun H; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Wang X; Division of Mechanical System Engineering, Jeonbuk National University, Jeonju-si, Jellabuk-do 54896, Republic of Korea.
  • Parsons MF; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Bricker WP; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • John T; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Li S; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Jackson S; Department of Bioengineering, and James H. Clark Center, Stanford University, Stanford, CA 94305, USA.
  • Chiu W; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Bathe M; Department of Bioengineering, and James H. Clark Center, Stanford University, Stanford, CA 94305, USA.
Nucleic Acids Res ; 49(18): 10265-10274, 2021 10 11.
Article em En | MEDLINE | ID: mdl-34508356
ABSTRACT
Wireframe DNA origami assemblies can now be programmed automatically from the top-down using simple wireframe target geometries, or meshes, in 2D and 3D, using either rigid, six-helix bundle (6HB) or more compliant, two-helix bundle (DX) edges. While these assemblies have numerous applications in nanoscale materials fabrication due to their nanoscale spatial addressability and high degree of customization, no easy-to-use graphical user interface software yet exists to deploy these algorithmic approaches within a single, standalone interface. Further, top-down sequence design of 3D DX-based objects previously enabled by DAEDALUS was limited to discrete edge lengths and uniform vertex angles, limiting the scope of objects that can be designed. Here, we introduce the open-source software package ATHENA with a graphical user interface that automatically renders single-stranded DNA scaffold routing and staple strand sequences for any target wireframe DNA origami using DX or 6HB edges, including irregular, asymmetric DX-based polyhedra with variable edge lengths and vertices demonstrated experimentally, which significantly expands the set of possible 3D DNA-based assemblies that can be designed. ATHENA also enables external editing of sequences using caDNAno, demonstrated using asymmetric nanoscale positioning of gold nanoparticles, as well as providing atomic-level models for molecular dynamics, coarse-grained dynamics with oxDNA, and other computational chemistry simulation approaches.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Software / DNA / Nanotecnologia / Nanoestruturas / Nanopartículas Metálicas / Ouro Tipo de estudo: Prognostic_studies Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Software / DNA / Nanotecnologia / Nanoestruturas / Nanopartículas Metálicas / Ouro Tipo de estudo: Prognostic_studies Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos