Your browser doesn't support javascript.
loading
Prefrontal Cortex Activation and Stopping Performance Underlie the Beneficial Effects of Atomoxetine on Response Inhibition in Healthy Volunteers and Those With Cocaine Use Disorder.
Zhukovsky, Peter; Morein-Zamir, Sharon; Ziauddeen, Hisham; Fernandez-Egea, Emilio; Meng, Chun; Regenthal, Ralf; Sahakian, Barbara J; Bullmore, Edward T; Robbins, Trevor W; Dalley, Jeffrey W; Ersche, Karen D.
Afiliação
  • Zhukovsky P; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom.
  • Morein-Zamir S; School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, United Kingdom.
  • Ziauddeen H; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough Foundation Trust, Cambridge, United Kingdom.
  • Fernandez-Egea E; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough Foundation Trust, Cambridge, United Kingdom.
  • Meng C; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom.
  • Regenthal R; Clinical Pharmacology Department, Leipzig University, Leipzig, Germany; Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany.
  • Sahakian BJ; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom.
  • Bullmore ET; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough Foundation Trust, Cambridge, United Kingdom; GlaxoSmithKline, Immuno-Inflammation Therapeutic Area Unit, Stevenage, Hertfordshire, United Kingdom.
  • Robbins TW; Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom.
  • Dalley JW; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom.
  • Ersche KD; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Institut of Systems Neuroscience, Universit
Article em En | MEDLINE | ID: mdl-34508901
ABSTRACT

BACKGROUND:

Impaired response inhibition in individuals with cocaine use disorder (CUD) is hypothesized to depend on deficient noradrenergic signaling in corticostriatal networks. Remediation of noradrenergic neurotransmission with selective norepinephrine reuptake inhibitors such as atomoxetine may therefore have clinical utility to improve response inhibitory control in CUD.

METHODS:

We carried out a randomized, double-blind, placebo-controlled, crossover study with 26 participants with CUD and 28 control volunteers investigating the neural substrates of stop-signal inhibitory control. The effects of a single dose of atomoxetine (40 mg) were compared with placebo on stop-signal reaction time performance and functional network connectivity using dynamic causal modeling.

RESULTS:

We found that atomoxetine speeded Go response times in both control participants and those with CUD. Improvements in stopping efficiency on atomoxetine were conditional on baseline (placebo) stopping performance and were directly associated with increased inferior frontal gyrus activation. Further, stopping performance, task-based brain activation, and effective connectivity were similar in the 2 groups. Dynamic causal modeling of effective connectivity of multiple prefrontal and basal ganglia regions replicated and extended previous models of network function underlying inhibitory control to CUD and control volunteers and showed subtle effects of atomoxetine on prefrontal-basal ganglia interactions.

CONCLUSIONS:

These findings demonstrate that atomoxetine improves response inhibition in a baseline-dependent manner in control participants and in those with CUD. Our results emphasize inferior frontal cortex function as a future treatment target owing to its key role in improving response inhibition in CUD.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cocaína / Inibidores da Captação Adrenérgica Tipo de estudo: Clinical_trials / Prognostic_studies Limite: Humans Idioma: En Revista: Biol Psychiatry Cogn Neurosci Neuroimaging Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cocaína / Inibidores da Captação Adrenérgica Tipo de estudo: Clinical_trials / Prognostic_studies Limite: Humans Idioma: En Revista: Biol Psychiatry Cogn Neurosci Neuroimaging Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Reino Unido
...