Your browser doesn't support javascript.
loading
Pinoresinol diglucoside alleviates ischemia/reperfusion-induced brain injury by modulating neuroinflammation and oxidative stress.
Zhang, Yi; Lei, Yuanbiao; Yao, Xiaoxi; Yi, Jiping; Feng, Ganghua.
Afiliação
  • Zhang Y; Department of Neurology, Chenzhou No. 1 People's Hospital, Chenzhou, China.
  • Lei Y; Department of Neurology, Chenzhou No. 1 People's Hospital, Chenzhou, China.
  • Yao X; Department of Neurology, Chenzhou No. 1 People's Hospital, Chenzhou, China.
  • Yi J; Department of Neurology, Chenzhou No. 1 People's Hospital, Chenzhou, China.
  • Feng G; Department of Neurology, Chenzhou No. 1 People's Hospital, Chenzhou, China.
Chem Biol Drug Des ; 98(6): 986-996, 2021 12.
Article em En | MEDLINE | ID: mdl-34546621
ABSTRACT
Brain ischemia/reperfusion (I/R) injury is a common pathological process after ischemic stroke. Pinoresinol diglucoside (PDG) has antioxidation and anti-inflammation activities. However, whether PDG ameliorates brain I/R injury is still unclear. In this study, middle cerebral artery occlusion (MCAO) model was established with male C57BL/6 mice, and the mice were treated with 5 and 10 mg/kg PDG via intravenous injection, respectively. The neurological deficit, infarct volume, and brain water content were then evaluated. HE staining and Nissl staining were used to analyze neuron injury. Besides, enzyme-linked immunosorbent assay and colorimetry assay were used to examine the level of inflammatory markers and oxidative stress markers, and Western blot was used to detect the expressions of p-p65, Nrf2, and HO-1. It was revealed that PDG could significantly alleviate the MCAO-induced neurological dysfunction of the mice and reduce the infarct volume, brain water content, and neuron injury. PDG treatment decreased the levels of TNF-α, IL-1ß, IL-6, NO, ROS, and MDA, and significantly increased the activities of SOD, GSH, and GSH-Px in the brain tissue of the mice. Additionally, PDG could repress the activation of p65 and promote Nrf2 and HO-1 expressions. In conclusion, PDG exerts anti-inflammatory and antioxidation effects via regulating the NF-κB pathway and Nrf2/HO-1 pathway, thereby reducing the I/R-induced brain injury of mice.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão / Lignanas / Estresse Oxidativo / Doenças Neuroinflamatórias Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals Idioma: En Revista: Chem Biol Drug Des Assunto da revista: BIOQUIMICA / FARMACIA / FARMACOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão / Lignanas / Estresse Oxidativo / Doenças Neuroinflamatórias Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals Idioma: En Revista: Chem Biol Drug Des Assunto da revista: BIOQUIMICA / FARMACIA / FARMACOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China