Mechanosensitive miR-100 coordinates TGFß and Wnt signaling in osteocytes during fluid shear stress.
FASEB J
; 35(10): e21883, 2021 10.
Article
em En
| MEDLINE
| ID: mdl-34569659
Organism scale mechanical forces elicit cellular scale changes through coordinated regulation of multiple signaling pathways. The mechanisms by which cells integrate signaling to generate a unified biological response remains a major question in mechanobiology. For example, the mechanosensitive response of bone and other tissues requires coordinated signaling by the transforming growth factor beta (TGFß) and Wnt pathways through mechanisms that are not well-defined. Here we report a new microRNA-dependent mechanism that mediates mechanosensitive crosstalk between TGFß and Wnt signaling in osteocytes exposed to fluid shear stress (FSS). From 60 mechanosensitive microRNA (miRs) identified by small-RNAseq, miR100 expression is suppressed by in vivo hindlimb loading in the murine tibia and by cellular scale FSS in OCY454 cells. Though FSS activates both TGFß and Wnt signaling in osteocytes, only TGFß represses miR-100 expression. miR-100, in turn, antagonizes Wnt signaling by targeting and inhibiting expression of Frizzled receptors (FZD5/FZD8). Accordingly, miR-100 inhibition blunts FSS- and TGFß-inducible Wnt signaling. Therefore, our results identify FSS-responsive miRNAs in osteocytes, including one that integrates the mechanosensitive function of two essential signaling pathways in the osteoanabolic response of bone to mechanical load.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Osteócitos
/
Fator de Crescimento Transformador beta
/
MicroRNAs
/
Mecanotransdução Celular
/
Resistência ao Cisalhamento
/
Via de Sinalização Wnt
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
FASEB J
Assunto da revista:
BIOLOGIA
/
FISIOLOGIA
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Estados Unidos