Your browser doesn't support javascript.
loading
The fragmentation mechanism of gold nanoparticles in water under femtosecond laser irradiation.
Bongiovanni, Gabriele; Olshin, Pavel K; Yan, Chengcheng; Voss, Jonathan M; Drabbels, Marcel; Lorenz, Ulrich J.
Afiliação
  • Bongiovanni G; Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland ulrich.lorenz@epfl.ch.
  • Olshin PK; Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland ulrich.lorenz@epfl.ch.
  • Yan C; Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland ulrich.lorenz@epfl.ch.
  • Voss JM; Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland ulrich.lorenz@epfl.ch.
  • Drabbels M; Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland ulrich.lorenz@epfl.ch.
  • Lorenz UJ; Laboratory of Molecular Nanodynamics, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland ulrich.lorenz@epfl.ch.
Nanoscale Adv ; 3(18): 5277-5283, 2021 Sep 14.
Article em En | MEDLINE | ID: mdl-34589666
ABSTRACT
Plasmonic nanoparticles in aqueous solution have long been known to fragment under irradiation with intense ultrafast laser pulses, creating progeny particles with diameters of a few nanometers. However, the mechanism of this process is still intensely debated, despite numerous experimental and theoretical studies. Here, we use in situ electron microscopy to directly observe the femtosecond laser-induced fragmentation of gold nanoparticles in water, revealing that the process occurs through ejection of individual progeny particles. Our observations suggest that the fragmentation mechanism involves Coulomb fission, which occurs as the femtosecond laser pulses ionize and melt the gold nanoparticle, causing it to eject a highly charged progeny droplet. Subsequent Coulomb fission events, accompanied by solution-mediated etching and growth processes, create complex fragmentation patterns that rapidly fluctuate under prolonged irradiation. Our study highlights the complexity of the interaction of plasmonic nanoparticles with ultrafast laser pulses and underlines the need for in situ observations to unravel the mechanisms of related phenomena.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Adv Ano de publicação: 2021 Tipo de documento: Article País de publicação: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Adv Ano de publicação: 2021 Tipo de documento: Article País de publicação: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM