Your browser doesn't support javascript.
loading
Unsupervised learning polarimetric underwater image recovery under nonuniform optical fields.
Appl Opt ; 60(26): 8198-8205, 2021 Sep 10.
Article em En | MEDLINE | ID: mdl-34613084
Turbid media will lead to a sharp decline in image quality. Polarization imaging is an effective method to obtain clear images in turbid media. In this paper, we propose an improved method that combines unsupervised learning and polarization imaging theory, which can be applied in a variety of nonuniform optical fields. We treat the background light as a spatially variable parameter, so we designed an end-to-end unsupervised generative network to inpaint the background light, which produces an adversarial loss with the discriminative network to improve the performance. And we use the angle of polarization to estimate the polarization parameters. The experimental results have demonstrated the effectiveness and generalization ability of our method. Compared with other works, our method shows a better real-time performance and has a lower cost in preparing the training dataset.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Appl Opt Ano de publicação: 2021 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Appl Opt Ano de publicação: 2021 Tipo de documento: Article País de publicação: Estados Unidos