Your browser doesn't support javascript.
loading
Synergies of Human Umbilical Vein Endothelial Cell-Laden Calcium Silicate-Activated Gelatin Methacrylate for Accelerating 3D Human Dental Pulp Stem Cell Differentiation for Endodontic Regeneration.
Lai, Wei-Yun; Lee, Tzu-Hsin; Chen, Jian-Xun; Ng, Hooi-Yee; Huang, Tsui-Hsien; Shie, Ming-You.
Afiliação
  • Lai WY; School of Dentistry, Chung Shan Medical University, Taichung 406040, Taiwan.
  • Lee TH; Department of Orthodontics, Changhua Christian Hospital, Changhua 500, Taiwan.
  • Chen JX; School of Medicine, China Medical University, Taichung 40447, Taiwan.
  • Ng HY; Department of Surgery, China Medical University Hospital, Taichung 406040, Taiwan.
  • Huang TH; School of Medicine, China Medical University, Taichung 40447, Taiwan.
  • Shie MY; x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan.
Polymers (Basel) ; 13(19)2021 Sep 27.
Article em En | MEDLINE | ID: mdl-34641117
According to the Centers for Disease Control and Prevention, tooth caries is a common problem affecting 9 out of every 10 adults worldwide. Dentin regeneration has since become one of the pressing issues in dentistry with tissue engineering emerging as a potential solution for enhancing dentin regeneration. In this study, we fabricated cell blocks with human dental pulp stem cells (hDPSCs)-laden alginate/fish gelatin hydrogels (Alg/FGel) at the center of the cell block and human umbilical vascular endothelial cells (HUVEC)-laden Si ion-infused fish gelatin methacrylate (FGelMa) at the periphery of the cell block. 1H NMR and FTIR results showed the successful fabrication of Alg/FGel and FGelMa. In addition, Si ions in the FGelMa were noted to be bonded via covalent bonds and the increased number of covalent bonds led to an increase in mechanical properties and improved degradation of FGelMa. The Si-containing FGelMa was able to release Si ions, which subsequently significantly not only enhanced the expressions of angiogenic-related protein, but also secreted some cytokines to regulate odontogenesis. Further immunofluorescence results indicated that the cell blocks allowed interactions between the HUVEC and hDPSCs, and taken together, were able to enhance odontogenic-related markers' expression, such as alkaline phosphatase (ALP), dentin matrix phosphoprotein-1 (DMP-1), and osteocalcin (OC). Subsequent Alizarin Red S stain confirmed the benefits of our cell block and demonstrated that such a novel combination and modification of biomaterials can serve as a platform for future clinical applications and use in dentin regeneration.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Polymers (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Taiwan País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Polymers (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Taiwan País de publicação: Suíça