Your browser doesn't support javascript.
loading
Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries.
Guo, Yubing; Zhang, Jiachen; Hu, Wenqi; Khan, Muhammad Turab Ali; Sitti, Metin.
Afiliação
  • Guo Y; Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
  • Zhang J; Institute of Engineering Medicine, Beijing Institute of Technology, 100081, Beijing, China.
  • Hu W; Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
  • Khan MTA; Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China.
  • Sitti M; Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
Nat Commun ; 12(1): 5936, 2021 Oct 12.
Article em En | MEDLINE | ID: mdl-34642352
ABSTRACT
Liquid crystal elastomers exhibit large reversible strain and programmable shape transformations, enabling various applications in soft robotics, dynamic optics, and programmable origami and kirigami. The morphing modes of these materials depend on both their geometries and director fields. In two dimensions, a pixel-by-pixel design has been accomplished to attain more flexibility over the spatial resolution of the liquid crystal response. Here we generalize this idea in two steps. First, we create independent, cubic light-responsive voxels, each with a predefined director field orientation. Second, these voxels are in turn assembled to form lines, grids, or skeletal structures that would be rather difficult to obtain from an initially connected material sample. In this way, the orientation of the director fields can be made to vary at voxel resolution to allow for programmable optically- or thermally-triggered anisotropic or heterogeneous material responses and morphology changes in three dimensions that would be impossible or hard to implement otherwise.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha