Applications of various data-driven models for the prediction of groundwater quality index in the Akot basin, Maharashtra, India.
Environ Sci Pollut Res Int
; 29(12): 17591-17605, 2022 Mar.
Article
em En
| MEDLINE
| ID: mdl-34671905
Data-driven models are important to predict groundwater quality which is controlling human health. The water quality index (WQI) has been developed based on the physicochemical parameters of water samples. In this area, water quality is medium to poor and is found in saline zones; very high pH ranges are directly affected on the water quality in this study area. Conventional WQI computation demands more time and is often observed with enormous errors during the calculation of sub-indices. In the present work, four standalone methods such as additive regression (AR), M5P tree model (M5P), random subspace (RSS), and support vector machine (SVM) were employed to predict WQI based on variable elimination technique. The groundwater samples were collected from the Akot basin area, located in the Akola district, Maharashtra, in India. A total of nine different input combinations were developed in this study. The datasets were demarcated into two classes (ratio 80:20) for model construction (training dataset) and model verification (testing dataset) using a fivefold cross-validation approach. The models were assessed using statistical and graphical appraisal metrics. The best input combinations varied among the model, generally, the optimal input variables (EC, pH, TDS, Ca, Mg, and Cl) during the training and validation stages. Results show that AR outperformed the other data-driven models (R2 = 0.9993, MAE = 0.5243, RMSE = 0.0.6356, %RAE = 3.8449, and RRSE% = 3.9925). The AR is proposed as an ideal model with satisfactory results due to enhanced prediction precision with the minimum number of input parameters and can thus act as the reliable and precise method in the prediction of WQI at the Akot basin.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Poluentes Químicos da Água
/
Água Subterrânea
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
País/Região como assunto:
Asia
Idioma:
En
Revista:
Environ Sci Pollut Res Int
Assunto da revista:
SAUDE AMBIENTAL
/
TOXICOLOGIA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Egito
País de publicação:
Alemanha