Your browser doesn't support javascript.
loading
Opportunities and Challenges for Machine Learning in Rare Diseases.
Decherchi, Sergio; Pedrini, Elena; Mordenti, Marina; Cavalli, Andrea; Sangiorgi, Luca.
Afiliação
  • Decherchi S; Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy.
  • Pedrini E; Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
  • Mordenti M; Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
  • Cavalli A; Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy.
  • Sangiorgi L; Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, Italy.
Front Med (Lausanne) ; 8: 747612, 2021.
Article em En | MEDLINE | ID: mdl-34676229
Rare diseases (RDs) are complicated health conditions that are difficult to be managed at several levels. The scarcity of available data chiefly determines an intricate scenario even for experts and specialized clinicians, which in turn leads to the so called "diagnostic odyssey" for the patient. This situation calls for innovative solutions to support the decision process via quantitative and automated tools. Machine learning brings to the stage a wealth of powerful inference methods; however, matching the health conditions with advanced statistical techniques raises methodological, technological, and even ethical issues. In this contribution, we critically point to the specificities of the dialog of rare diseases with machine learning techniques concentrating on the key steps and challenges that may hamper or create actionable knowledge and value for the patient together with some on-field methodological suggestions and considerations.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Aspecto: Ethics Idioma: En Revista: Front Med (Lausanne) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Itália País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Aspecto: Ethics Idioma: En Revista: Front Med (Lausanne) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Itália País de publicação: Suíça