Your browser doesn't support javascript.
loading
Application of machine learning classifiers for microcomputed tomography data assessment of mouse bone microarchitecture.
Coulombe, Jennifer C; Mullen, Zachary K; Lynch, Maureen E; Stodieck, Louis S; Ferguson, Virginia L.
Afiliação
  • Coulombe JC; Department of Mechanical Engineering, UCB 427, University of Colorado, Boulder, CO 80309, United States of America.
  • Mullen ZK; BioFrontiers Institute, UCB 596, University of Colorado, Boulder, CO 80309, United States of America.
  • Lynch ME; Laboratory for Interdisciplinary Statistical Analysis / Department of Computer Science, UCB 427, University of Colorado, Boulder, CO 80309, United States of America.
  • Stodieck LS; Department of Mechanical Engineering, UCB 427, University of Colorado, Boulder, CO 80309, United States of America.
  • Ferguson VL; BioFrontiers Institute, UCB 596, University of Colorado, Boulder, CO 80309, United States of America.
MethodsX ; 8: 101497, 2021.
Article em En | MEDLINE | ID: mdl-34754768
The current standard approach for analyzing cortical bone structure and trabecular bone microarchitecture from micro-computed tomography (microCT) is through classic parametric (e.g., ANOVA, Student's T-test) and nonparametric (e.g., Mann-Whitney U test) statistical tests and the reporting of p-values to indicate significance. However, on their own, these univariate assessments of significance fall prey to a number of weaknesses, including an increased chance of Type 1 error from multiple comparisons. Machine learning classification methods (e.g., unsupervised, k-means cluster analysis and supervised Support Vector Machine classification, SVM) simultaneously utilize an entire dataset comprised of many cortical structure or trabecular microarchitecture measures, thus minimizing bias and Type 1 error that are generated through multiple testing. Through simultaneous evaluation of an entire dataset, k-means and SVM thus provide a complementary approach to classic statistical analysis and enable a more robust assessment of microCT measures.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: MethodsX Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: MethodsX Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Holanda