Your browser doesn't support javascript.
loading
Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data.
Sun, Duanchen; Guan, Xiangnan; Moran, Amy E; Wu, Ling-Yun; Qian, David Z; Schedin, Pepper; Dai, Mu-Shui; Danilov, Alexey V; Alumkal, Joshi J; Adey, Andrew C; Spellman, Paul T; Xia, Zheng.
Afiliação
  • Sun D; Computational Biology Program, Oregon Health & Science University, Portland, OR, USA.
  • Guan X; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
  • Moran AE; Computational Biology Program, Oregon Health & Science University, Portland, OR, USA.
  • Wu LY; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
  • Qian DZ; Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
  • Schedin P; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
  • Dai MS; Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.
  • Danilov AV; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
  • Alumkal JJ; Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
  • Adey AC; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
  • Spellman PT; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA.
  • Xia Z; City of Hope National Medical Center, Duarte, CA, USA.
Nat Biotechnol ; 40(4): 527-538, 2022 04.
Article em En | MEDLINE | ID: mdl-34764492
Single-cell RNA sequencing (scRNA-seq) distinguishes cell types, states and lineages within the context of heterogeneous tissues. However, current single-cell data cannot directly link cell clusters with specific phenotypes. Here we present Scissor, a method that identifies cell subpopulations from single-cell data that are associated with a given phenotype. Scissor integrates phenotype-associated bulk expression data and single-cell data by first quantifying the similarity between each single cell and each bulk sample. It then optimizes a regression model on the correlation matrix with the sample phenotype to identify relevant subpopulations. Applied to a lung cancer scRNA-seq dataset, Scissor identified subsets of cells associated with worse survival and with TP53 mutations. In melanoma, Scissor discerned a T cell subpopulation with low PDCD1/CTLA4 and high TCF7 expression associated with an immunotherapy response. Beyond cancer, Scissor was effective in interpreting facioscapulohumeral muscular dystrophy and Alzheimer's disease datasets. Scissor identifies biologically and clinically relevant cell subpopulations from single-cell assays by leveraging phenotype and bulk-omics datasets.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise de Célula Única / Melanoma Tipo de estudo: Risk_factors_studies Limite: Humans Idioma: En Revista: Nat Biotechnol Assunto da revista: BIOTECNOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise de Célula Única / Melanoma Tipo de estudo: Risk_factors_studies Limite: Humans Idioma: En Revista: Nat Biotechnol Assunto da revista: BIOTECNOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos