Your browser doesn't support javascript.
loading
High-altitude adaptation in vertebrates as revealed by mitochondrial genome analyses.
Wang, Xibao; Zhou, Shengyang; Wu, Xiaoyang; Wei, Qinguo; Shang, Yongquan; Sun, Guolei; Mei, Xuesong; Dong, Yuehuan; Sha, Weilai; Zhang, Honghai.
Afiliação
  • Wang X; College of Life Science Qufu Normal University Qufu China.
  • Zhou S; College of Life Science Qufu Normal University Qufu China.
  • Wu X; College of Life Science Qufu Normal University Qufu China.
  • Wei Q; College of Life Science Qufu Normal University Qufu China.
  • Shang Y; College of Life Science Qufu Normal University Qufu China.
  • Sun G; College of Life Science Qufu Normal University Qufu China.
  • Mei X; College of Life Science Qufu Normal University Qufu China.
  • Dong Y; College of Life Science Qufu Normal University Qufu China.
  • Sha W; College of Life Science Qufu Normal University Qufu China.
  • Zhang H; College of Life Science Qufu Normal University Qufu China.
Ecol Evol ; 11(21): 15077-15084, 2021 Nov.
Article em En | MEDLINE | ID: mdl-34765161
The high-altitude environment may drive vertebrate evolution in a certain way, and vertebrates living in different altitude environments might have different energy requirements. We hypothesized that the high-altitude environment might impose different influences on vertebrate mitochondrial genomes (mtDNA). We used selection pressure analyses and PIC (phylogenetic independent contrasts) analysis to detect the evolutionary rate of vertebrate mtDNA protein-coding genes (PCGs) from different altitudes. The results showed that the ratio of nonsynonymous/synonymous substitutions (dN/dS) in the mtDNA PCGs was significantly higher in high-altitude vertebrates than in low-altitude vertebrates. The seven rapidly evolving genes were shared by the high-altitude vertebrates, and only one positive selection gene (ND5 gene) was detected in the high-altitude vertebrates. Our results suggest the mtDNA evolutionary rate in high-altitude vertebrates was higher than in low-altitude vertebrates as their evolution requires more energy in a high-altitude environment. Our study demonstrates the high-altitude environment (low atmospheric O2 levels) drives vertebrate evolution in mtDNA PCGs.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Ecol Evol Ano de publicação: 2021 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Ecol Evol Ano de publicação: 2021 Tipo de documento: Article País de publicação: Reino Unido