Coupling Between Production of Ribosomal RNA and Maturation: Just at the Beginning.
Front Mol Biosci
; 8: 778778, 2021.
Article
em En
| MEDLINE
| ID: mdl-34765647
Ribosomal RNA (rRNA) production represents the most active transcription in the cell. Synthesis of the large rRNA precursors (35S/47S in yeast/human) is achieved by up to hundreds of RNA polymerase I (Pol I) enzymes simultaneously transcribing a single rRNA gene. In this review, we present recent advances in understanding the coupling between rRNA production and nascent rRNA folding. Mapping of the distribution of Pol I along ribosomal DNA at nucleotide resolution, using either native elongating transcript sequencing (NET-Seq) or crosslinking and analysis of cDNAs (CRAC), revealed frequent Pol I pausing, and CRAC results revealed a direct coupling between pausing and nascent RNA folding. High density of Pol I per gene imposes topological constraints that establish a defined pattern of polymerase distribution along the gene, with a persistent spacing between transcribing enzymes. RNA folding during transcription directly acts as an anti-pausing mechanism, implying that proper folding of the nascent rRNA favors elongation in vivo. Defects in co-transcriptional folding of rRNA are likely to induce Pol I pausing. We propose that premature termination of transcription, at defined positions, can control rRNA production in vivo.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Front Mol Biosci
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
França
País de publicação:
Suíça