Controlling and Focusing In-Plane Hyperbolic Phonon Polaritons in α-MoO3 with a Curved Plasmonic Antenna.
Adv Mater
; 34(6): e2104164, 2022 Feb.
Article
em En
| MEDLINE
| ID: mdl-34791711
Hyperbolic phonon polaritons (HPhPs) sustained in polar van der Waals (vdW) crystals exhibit extraordinary confinement of long-wave electromagnetic fields to the deep subwavelength scale. In stark contrast to uniaxial vdW hyperbolic materials, recently emerged biaxial hyperbolic materials, such as α-MoO3 and α-V2 O5 , offer new degrees of freedom for controlling light in two-dimensions due to their distinctive in-plane hyperbolic dispersions. However, the control and focusing of these in-plane HPhPs remain elusive. Here, a versatile technique is proposed for launching, controlling, and focusing in-plane HPhPs in α-MoO3 with geometrically designed curved gold plasmonic antennas. It is found that the subwavelength manipulation and focusing behaviors are strongly dependent on the curvature of the antenna extremity. This strategy operates effectively in a broadband spectral region. These findings not only provide fundamental insights into the manipulation of light by biaxial hyperbolic crystals at the nanoscale but also open up new opportunities for planar nanophotonic applications.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Adv Mater
Assunto da revista:
BIOFISICA
/
QUIMICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Alemanha