Your browser doesn't support javascript.
loading
Assessing Acceptance Level of a Hybrid Clinical Decision Support Systems.
Kopanitsa, Georgy; Derevitskii, Ilia V; Savitskaya, Daria A; Kovalchuk, Sergey V.
Afiliação
  • Kopanitsa G; ITMO University, 49 Kronverskiy prospect, 197101, Saint Petersburg, Russia.
  • Derevitskii IV; ITMO University, 49 Kronverskiy prospect, 197101, Saint Petersburg, Russia.
  • Savitskaya DA; Almazov National Medical Research Centre, 2 Akkuratova st., 197341, Saint Petersburg, Russia.
  • Kovalchuk SV; ITMO University, 49 Kronverskiy prospect, 197101, Saint Petersburg, Russia.
Stud Health Technol Inform ; 287: 18-22, 2021 Nov 18.
Article em En | MEDLINE | ID: mdl-34795071
We present a user acceptance study of a clinical decision support system (CDSS) for Type 2 Diabetes Mellitus (T2DM) risk prediction. We focus on how a combination of data-driven and rule-based models influence the efficiency and acceptance by doctors. To evaluate the perceived usefulness, we randomly generated CDSS output in three different settings: Data-driven (DD) model output; DD model with a presence of known risk scale (FINDRISK); DD model with presence of risk scale and explanation of DD model. For each case, a physician was asked to answer 3 questions: if a doctor agrees with the result, if a doctor understands it, if the result is useful for the practice. We employed a Lankton's model to evaluate the user acceptance of the clinical decision support system. Our analysis has proved that without the presence of scales, a physician trust CDSS blindly. From the answers, we can conclude that interpretability plays an important role in accepting a CDSS.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Médicos / Sistemas de Apoio a Decisões Clínicas / Diabetes Mellitus Tipo 2 Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Stud Health Technol Inform Assunto da revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Federação Russa País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Médicos / Sistemas de Apoio a Decisões Clínicas / Diabetes Mellitus Tipo 2 Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Stud Health Technol Inform Assunto da revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Federação Russa País de publicação: Holanda