Your browser doesn't support javascript.
loading
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution.
Dong, Yixiao; Combs, J Dale; Cao, Cong; Weeks, Eric R; Bazrafshan, Alisina; Rashid, Sk Aysha; Salaita, Khalid.
Afiliação
  • Dong Y; Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States.
  • Combs JD; Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States.
  • Cao C; Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, United States.
  • Weeks ER; Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, United States.
  • Bazrafshan A; Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States.
  • Rashid SA; Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States.
  • Salaita K; Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States.
Nano Lett ; 21(23): 9958-9965, 2021 12 08.
Article em En | MEDLINE | ID: mdl-34797077
ABSTRACT
Hydrogels embedded with periodic arrays of nanoparticles display a striking photonic crystal coloration that may be useful for applications such as camouflage, anticounterfeiting, and chemical sensing. Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. Magnetic nanoparticles entrapped within these DNA gels generate a structural color only when the gel is heated and a magnetic field is applied. A spatially controlled photonic crystal coloration was achieved by photopatterning with a near-infrared illumination. Color was "erased" by illuminating or heating the gel in the absence of an external magnetic field. The on-demand assembly technology demonstrated here may be beneficial for the development of a new generation of smart materials with potential applications in erasable lithography, encryption, and sensing.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrogéis / Nanopartículas Idioma: En Revista: Nano Lett Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrogéis / Nanopartículas Idioma: En Revista: Nano Lett Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA