Iterative reconstruction improves image quality and reduces radiation dose in trauma protocols; A human cadaver study.
Acta Radiol Open
; 10(10): 20584601211055389, 2021 Oct.
Article
em En
| MEDLINE
| ID: mdl-34840815
BACKGROUND: Radiation-related cancer risk is an object of concern in CT of trauma patients, as these represent a young population. Different radiation reducing methods, including iterative reconstruction (IR), and spilt bolus techniques have been introduced in the recent years in different large scale trauma centers. PURPOSE: To compare image quality in human cadaver exposed to thoracoabdominal computed tomography using IR and standard filtered back-projection (FBP) at different dose levels. MATERIAL AND METHODS: Ten cadavers were scanned at full dose and a dose reduction in CTDIvol of 5 mGy (low dose 1) and 7.5 mGy (low dose 2) on a Siemens Definition Flash 128-slice computed tomography scanner. Low dose images were reconstructed with FBP and Sinogram affirmed iterative reconstruction (SAFIRE) level 2 and 4. Quantitative image quality was analyzed by comparison of contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). Qualitative image quality was evaluated by use of visual grading regression (VGR) by four radiologists. RESULTS: Readers preferred SAFIRE reconstructed images over FBP at a dose reduction of 40% (low dose 1) and 56% (low dose 2), with significant difference in overall impression of image quality. CNR and SNR showed significant improvement for images reconstructed with SAFIRE 2 and 4 compared to FBP at both low dose levels. CONCLUSIONS: Iterative image reconstruction, SAFIRE 2 and 4, resulted in equal or improved image quality at a dose reduction of up to 56% compared to full dose FBP and may be used a strong radiation reduction tool in the young trauma population.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Qualitative_research
Idioma:
En
Revista:
Acta Radiol Open
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Noruega
País de publicação:
Reino Unido