Tyndall-Effect-inspired assay with gold nanoparticles for the colorimetric discrimination and quantification of mercury ions and glutathione.
Talanta
; 238(Pt 1): 122999, 2022 Feb 01.
Article
em En
| MEDLINE
| ID: mdl-34857332
This work initially reports a new nanosening method for simple, sensitive, specific, visual detection of mercury (II) (Hg2+) and glutathione (GSH) using the Tyndall Effect (TE) of the same colloidal gold nanoparticle (GNP) probes for efficient colorimetric signaling amplification. For the TE-inspired assay (TEA) method, arginine (Arg) molecules are pre-modified on the GNPs' surfaces (Arg-GNPs). Upon the Hg2+ introduction, it can be specifically coordinated with the terminal -NH2 and -COOH groups of the Arg molecules to make the Arg-GNPs aggregate, producing a significantly-enhanced TE signal in the reaction solution after its irradiation by a 635-nm red laser pointer pen. On the other hand, the introduction of the GSH results in the production of the original Arg-GNPs' weak TE response, as it is able to bind such metal ion via mercury-thiol reactions to inhibit the above aggregation. Under the optimal conditions, the utility of the new TEA method is well demonstrated to quantitatively detect the Hg2+ and GSH with the aid of a smartphone as a portable TE reader during the linear concentration ranges of 50-3000 and 10-3000 nM, respectively. The detection limits for the Hg2+ and GSH are estimated to be as low as â¼3.5 and â¼0.3 nM, respectively. The recovery results obtained from the detection of Hg2+ in the complex tap and pond water samples and the assay of GSH in real human serum and urine samples are also satisfactory.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Nanopartículas Metálicas
/
Mercúrio
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
Talanta
Ano de publicação:
2022
Tipo de documento:
Article
País de publicação:
Holanda