Self-templating hydrothermal synthesis of carbon-confined double-shelled Ni/NiO hollow microspheres for diphenylamine detection in fruit samples.
J Hazard Mater
; 424(Pt A): 127378, 2022 02 15.
Article
em En
| MEDLINE
| ID: mdl-34879572
Toxic substances, such as heavy metals, toxins, pesticides, pathogens, and veterinary drug residues in food are hazardous to consumer health. The variety and quantity of food consumption have increased owing to developments in the agricultural and food industries. Food safety has a substantial socioeconomic impact, and an increasing number of consumers have become aware of its importance. Therefore, simple and cost-effective analytical methods are required to quantify the safety of preservatives. Herein, we report an electrochemical method using double-shelled carbon-confined Ni/NiO (C@Ni/NiO) hollow microspheres to detect diphenylamine (DPA). The microspheres were synthesized by a self-templating hydrothermal method followed by calcination. The hydrothermal temperature and precursor ratio were optimized systematically to prepare double-shelled C@Ni/NiO hollow microspheres. The excellent electrocatalytic activity and electron transport properties of a C@Ni/NiO-modified glassy carbon electrode (GCE) were exploited in the electrochemical oxidation of DPA. Interestingly, the engineered C@Ni/NiO/GCE has a wide dynamic linear range (0.02-473 µM) and a DPA detection limit of 0.007 µM. In addition, the DPA sensor exhibited good selectivity, reproducibility, repeatability, and stability. The practical feasibility of the DPA sensor was evaluated in fruit samples (sweet tomatoes, apples, and red grapes), with considerable recovery.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Carbono
/
Difenilamina
Tipo de estudo:
Diagnostic_studies
Idioma:
En
Revista:
J Hazard Mater
Assunto da revista:
SAUDE AMBIENTAL
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Taiwan
País de publicação:
Holanda