Your browser doesn't support javascript.
loading
Ammonia assimilation: A double-edged sword influencing denitrification of Rhodobacter azotoformans and for nitrogen removal of aquaculture wastewater.
Li, Zhen; Li, Lu; Sun, Haoyu; Wang, Wenjuan; Yang, Yuying; Qi, Zhengliang; Liu, Xinli.
Afiliação
  • Li Z; Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China; State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences),
  • Li L; Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China; State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences),
  • Sun H; Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China; State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences),
  • Wang W; Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China; State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences),
  • Yang Y; Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China; State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences),
  • Qi Z; Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China. Electronic address: qizhengliang@qlu.edu.cn.
  • Liu X; Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China; State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences),
Bioresour Technol ; 345: 126495, 2022 Feb.
Article em En | MEDLINE | ID: mdl-34883195
ABSTRACT
NO3--N and NH4+-N are two prevalent nitrogenous pollutants in aquaculture wastewater posing a significant health risk to aquatic animals. R. azotoformans ATCC17025 can rapidly denitrify to remove NO3--N, assimilating NH4+-N. The study investigated the influence of ammonia assimilation on bacterial denitrification. Results revealed that low concentration of NH4+-N (≤0.3 mM) accelerated denitrification, whereas high concentration inhibited it. RT-qPCR indicated that the inhibition of NO reduction under high concentration of NH4+-N was the primary cause of denitrification depression, whereas low concentration of NH4+-N enhanced the synthesis of practically all enzymes involved in denitrification. Finally, nitrogen-rich aquaculture effluent was effectively treated in lab-scale using a semi-continuous operation that provided an appropriate NH4+-N concentration for denitrification. This semi-continuous operation treated wastewater 2 times faster than the batch operation and the content of nitrogen decreased to effluent standard. The study can provide guidance for nitrogen removal of aquaculture wastewater with bioaugmentation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Águas Residuárias / Amônia Tipo de estudo: Guideline Limite: Animals Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Águas Residuárias / Amônia Tipo de estudo: Guideline Limite: Animals Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article