Your browser doesn't support javascript.
loading
Two-Stage TMLE to reduce bias and improve efficiency in cluster randomized trials.
Balzer, Laura B; van der Laan, Mark; Ayieko, James; Kamya, Moses; Chamie, Gabriel; Schwab, Joshua; Havlir, Diane V; Petersen, Maya L.
Afiliação
  • Balzer LB; Department of Biostatistics & Epidemiology, University of Massachusetts Amherst, 715 North Pleasant St, Amherst, MA, USA.
  • van der Laan M; Division of Biostatistics, University of California Berkeley, 2121 Berkeley Way, Berkeley, CA, USA.
  • Ayieko J; Center for Microbiology Research, Kenya Medical Research Institute, P.O. BOX 54840 00200 Off Raila Odinga Way, Nairobi, Kenya.
  • Kamya M; Department of Medicine, Makerere University and the Infectious Diseases Research Collaboration, P.O Box 7475, Kampala, Uganda.
  • Chamie G; Department of Medicine, University of California San Francisco, 995 Potrero Ave, San Francisco, CA, USA.
  • Schwab J; Division of Biostatistics, University of California Berkeley, 2121 Berkeley Way, Berkeley, CA, USA.
  • Havlir DV; Department of Medicine, University of California San Francisco, 995 Potrero Ave, San Francisco, CA, USA.
  • Petersen ML; Division of Biostatistics, University of California Berkeley, 2121 Berkeley Way, Berkeley, CA, USA.
Biostatistics ; 24(2): 502-517, 2023 04 14.
Article em En | MEDLINE | ID: mdl-34939083
Cluster randomized trials (CRTs) randomly assign an intervention to groups of individuals (e.g., clinics or communities) and measure outcomes on individuals in those groups. While offering many advantages, this experimental design introduces challenges that are only partially addressed by existing analytic approaches. First, outcomes are often missing for some individuals within clusters. Failing to appropriately adjust for differential outcome measurement can result in biased estimates and inference. Second, CRTs often randomize limited numbers of clusters, resulting in chance imbalances on baseline outcome predictors between arms. Failing to adaptively adjust for these imbalances and other predictive covariates can result in efficiency losses. To address these methodological gaps, we propose and evaluate a novel two-stage targeted minimum loss-based estimator to adjust for baseline covariates in a manner that optimizes precision, after controlling for baseline and postbaseline causes of missing outcomes. Finite sample simulations illustrate that our approach can nearly eliminate bias due to differential outcome measurement, while existing CRT estimators yield misleading results and inferences. Application to real data from the SEARCH community randomized trial demonstrates the gains in efficiency afforded through adaptive adjustment for baseline covariates, after controlling for missingness on individual-level outcomes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Projetos de Pesquisa / Avaliação de Resultados em Cuidados de Saúde Tipo de estudo: Clinical_trials / Prognostic_studies Limite: Humans Idioma: En Revista: Biostatistics Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Projetos de Pesquisa / Avaliação de Resultados em Cuidados de Saúde Tipo de estudo: Clinical_trials / Prognostic_studies Limite: Humans Idioma: En Revista: Biostatistics Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido