Insights Into the Inhibition of MOX-1 ß-Lactamase by S02030, a Boronic Acid Transition State Inhibitor.
Front Microbiol
; 12: 720036, 2021.
Article
em En
| MEDLINE
| ID: mdl-34970229
The rise of multidrug resistant (MDR) Gram-negative bacteria has accelerated the development of novel inhibitors of class A and C ß-lactamases. Presently, the search for novel compounds with new mechanisms of action is a clinical and scientific priority. To this end, we determined the 2.13-Å resolution crystal structure of S02030, a boronic acid transition state inhibitor (BATSI), bound to MOX-1 ß-lactamase, a plasmid-borne, expanded-spectrum AmpC ß-lactamase (ESAC) and compared this to the previously reported aztreonam (ATM)-bound MOX-1 structure. Superposition of these two complexes shows that S02030 binds in the active-site cavity more deeply than ATM. In contrast, the SO3 interactions and the positional change of the ß-strand amino acids from Lys315 to Asn320 were more prominent in the ATM-bound structure. MICs were performed using a fixed concentration of S02030 (4 µg/ml) as a proof of principle. Microbiological evaluation against a laboratory strain of Escherichia coli expressing MOX-1 revealed that MICs against ceftazidime are reduced from 2.0 to 0.12 µg/ml when S02030 is added at a concentration of 4 µg/ml. The IC50 and K i of S02030 vs. MOX-1 were 1.25 ± 0.34 and 0.56 ± 0.03 µM, respectively. Monobactams such as ATM can serve as informative templates for design of mechanism-based inhibitors such as S02030 against ESAC ß-lactamases.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Front Microbiol
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Japão
País de publicação:
Suíça