Your browser doesn't support javascript.
loading
Fabrication of Host-Guest Complexes between Adamantane-Functionalized 1,3,4-Oxadiazoles and ß-Cyclodextrin with Improved Control Efficiency against Intractable Plant Bacterial Diseases.
Ji, Qing-Tian; Mu, Xian-Fu; Hu, De-Kun; Fan, Li-Jun; Xiang, Shu-Zhen; Ye, Hao-Jie; Gao, Xiu-Hui; Wang, Pei-Yi.
Afiliação
  • Ji QT; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
  • Mu XF; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
  • Hu DK; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
  • Fan LJ; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
  • Xiang SZ; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
  • Ye HJ; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
  • Gao XH; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
  • Wang PY; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
ACS Appl Mater Interfaces ; 14(2): 2564-2577, 2022 Jan 19.
Article em En | MEDLINE | ID: mdl-34981928
Supramolecular chemistry provides huge potentials and opportunities in agricultural pest management. In an attempt to develop highly bioactive, eco-friendly, and biocompatible supramolecular complexes for managing intractable plant bacterial diseases, herein, a type of interesting adamantane-functionalized 1,3,4-oxadiazole was rationally prepared to facilitate the formation of supramolecular complexes via ß-cyclodextrin-adamantane host-guest interactions. Initial antibacterial screening revealed that most of these adamantane-decorated 1,3,4-oxadiazoles were obviously bioactive against three typically destructive phytopathogens. The lowest EC50 values could reach 0.936 (III18), 0.889 (III18), and 2.10 (III19) µg/mL against the corresponding Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and Pseudomonas syringae pv. actinidiae (Psa). Next, the representative supramolecular binary complex III18@ß-CD (binding mode 1:1) was successfully fabricated and characterized by 1H nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC), high-resolution mass spectrometry (HRMS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Eventually, correlative water solubility and foliar surface wettability were significantly improved after the formation of host-guest assemblies. In vivo antibacterial evaluation found that the achieved supramolecular complex could distinctly alleviate the disease symptoms and promote the control efficiencies against rice bacterial blight (from 34.6-35.7% (III18) to 40.3-43.6% (III18@ß-CD)) and kiwi canker diseases (from 41.0-42.3% (III18) to 53.9-68.0% (III18@ß-CD)) at 200 µg/mL (active ingredient). The current study can provide a feasible platform and insight for constructing biocompatible supramolecular assemblies for managing destructive bacterial infections in agriculture.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxidiazóis / Infecções Bacterianas / Materiais Biocompatíveis / Adamantano / Beta-Ciclodextrinas / Antibacterianos Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxidiazóis / Infecções Bacterianas / Materiais Biocompatíveis / Adamantano / Beta-Ciclodextrinas / Antibacterianos Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos