Fabrication of Host-Guest Complexes between Adamantane-Functionalized 1,3,4-Oxadiazoles and ß-Cyclodextrin with Improved Control Efficiency against Intractable Plant Bacterial Diseases.
ACS Appl Mater Interfaces
; 14(2): 2564-2577, 2022 Jan 19.
Article
em En
| MEDLINE
| ID: mdl-34981928
Supramolecular chemistry provides huge potentials and opportunities in agricultural pest management. In an attempt to develop highly bioactive, eco-friendly, and biocompatible supramolecular complexes for managing intractable plant bacterial diseases, herein, a type of interesting adamantane-functionalized 1,3,4-oxadiazole was rationally prepared to facilitate the formation of supramolecular complexes via ß-cyclodextrin-adamantane host-guest interactions. Initial antibacterial screening revealed that most of these adamantane-decorated 1,3,4-oxadiazoles were obviously bioactive against three typically destructive phytopathogens. The lowest EC50 values could reach 0.936 (III18), 0.889 (III18), and 2.10 (III19) µg/mL against the corresponding Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and Pseudomonas syringae pv. actinidiae (Psa). Next, the representative supramolecular binary complex III18@ß-CD (binding mode 1:1) was successfully fabricated and characterized by 1H nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC), high-resolution mass spectrometry (HRMS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Eventually, correlative water solubility and foliar surface wettability were significantly improved after the formation of host-guest assemblies. In vivo antibacterial evaluation found that the achieved supramolecular complex could distinctly alleviate the disease symptoms and promote the control efficiencies against rice bacterial blight (from 34.6-35.7% (III18) to 40.3-43.6% (III18@ß-CD)) and kiwi canker diseases (from 41.0-42.3% (III18) to 53.9-68.0% (III18@ß-CD)) at 200 µg/mL (active ingredient). The current study can provide a feasible platform and insight for constructing biocompatible supramolecular assemblies for managing destructive bacterial infections in agriculture.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Oxidiazóis
/
Infecções Bacterianas
/
Materiais Biocompatíveis
/
Adamantano
/
Beta-Ciclodextrinas
/
Antibacterianos
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Assunto da revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Estados Unidos