Your browser doesn't support javascript.
loading
DUNEScan: a web server for uncertainty estimation in skin cancer detection with deep neural networks.
Mazoure, Bogdan; Mazoure, Alexander; Bédard, Jocelyn; Makarenkov, Vladimir.
Afiliação
  • Mazoure B; School of Computer Science, McGill University and Quebec AI Institute (MILA), Montreal, Canada. bogdan.mazoure@mail.mcgill.ca.
  • Mazoure A; JACOBB Applied Artificial Intelligence Center, Montreal, Canada.
  • Bédard J; Département d'Informatique, Université du Québec à Montréal, Montreal, Canada.
  • Makarenkov V; Département d'Informatique, Université du Québec à Montréal, Montreal, Canada.
Sci Rep ; 12(1): 179, 2022 01 07.
Article em En | MEDLINE | ID: mdl-34996997
Recent years have seen a steep rise in the number of skin cancer detection applications. While modern advances in deep learning made possible reaching new heights in terms of classification accuracy, no publicly available skin cancer detection software provide confidence estimates for these predictions. We present DUNEScan (Deep Uncertainty Estimation for Skin Cancer), a web server that performs an intuitive in-depth analysis of uncertainty in commonly used skin cancer classification models based on convolutional neural networks (CNNs). DUNEScan allows users to upload a skin lesion image, and quickly compares the mean and the variance estimates provided by a number of new and traditional CNN models. Moreover, our web server uses the Grad-CAM and UMAP algorithms to visualize the classification manifold for the user's input, hence providing crucial information about its closeness to skin lesion images  from the popular ISIC database. DUNEScan is freely available at: https://www.dunescan.org .
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Cutâneas / Interpretação de Imagem Assistida por Computador / Fotografação / Diagnóstico por Computador / Internet / Aprendizado Profundo Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Sci Rep Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Canadá País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Cutâneas / Interpretação de Imagem Assistida por Computador / Fotografação / Diagnóstico por Computador / Internet / Aprendizado Profundo Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Sci Rep Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Canadá País de publicação: Reino Unido