DUNEScan: a web server for uncertainty estimation in skin cancer detection with deep neural networks.
Sci Rep
; 12(1): 179, 2022 01 07.
Article
em En
| MEDLINE
| ID: mdl-34996997
Recent years have seen a steep rise in the number of skin cancer detection applications. While modern advances in deep learning made possible reaching new heights in terms of classification accuracy, no publicly available skin cancer detection software provide confidence estimates for these predictions. We present DUNEScan (Deep Uncertainty Estimation for Skin Cancer), a web server that performs an intuitive in-depth analysis of uncertainty in commonly used skin cancer classification models based on convolutional neural networks (CNNs). DUNEScan allows users to upload a skin lesion image, and quickly compares the mean and the variance estimates provided by a number of new and traditional CNN models. Moreover, our web server uses the Grad-CAM and UMAP algorithms to visualize the classification manifold for the user's input, hence providing crucial information about its closeness to skin lesion images from the popular ISIC database. DUNEScan is freely available at: https://www.dunescan.org .
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Neoplasias Cutâneas
/
Interpretação de Imagem Assistida por Computador
/
Fotografação
/
Diagnóstico por Computador
/
Internet
/
Aprendizado Profundo
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
Sci Rep
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Canadá
País de publicação:
Reino Unido