Your browser doesn't support javascript.
loading
Functional cortical localization of tongue movements using corticokinematic coherence with a deep learning-assisted motion capture system.
Maezawa, Hitoshi; Fujimoto, Momoka; Hata, Yutaka; Matsuhashi, Masao; Hashimoto, Hiroaki; Kashioka, Hideki; Yanagida, Toshio; Hirata, Masayuki.
Afiliação
  • Maezawa H; Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan. maezawa@ndr.med.osaka-u.ac.jp.
  • Fujimoto M; Graduate School of Simulation Studies, University of Hyogo, Minatojima-minamimachi 7-1-28, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
  • Hata Y; Graduate School of Simulation Studies, University of Hyogo, Minatojima-minamimachi 7-1-28, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
  • Matsuhashi M; Graduate School of Medicine, Human Brain Research Center, Kyoto University, Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan.
  • Hashimoto H; Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
  • Kashioka H; Neurosurgery, Otemae Hospital, Otemae1-5-34, Chuo-ku, Osaka, 540-0008, Japan.
  • Yanagida T; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Yamadaoka 1-4, Suita, Osaka, 565-0871, Japan.
  • Hirata M; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Yamadaoka 1-4, Suita, Osaka, 565-0871, Japan.
Sci Rep ; 12(1): 388, 2022 01 10.
Article em En | MEDLINE | ID: mdl-35013521
ABSTRACT
Corticokinematic coherence (CKC) between magnetoencephalographic and movement signals using an accelerometer is useful for the functional localization of the primary sensorimotor cortex (SM1). However, it is difficult to determine the tongue CKC because an accelerometer yields excessive magnetic artifacts. Here, we introduce a novel approach for measuring the tongue CKC using a deep learning-assisted motion capture system with videography, and compare it with an accelerometer in a control task measuring finger movement. Twelve healthy volunteers performed rhythmical side-to-side tongue movements in the whole-head magnetoencephalographic system, which were simultaneously recorded using a video camera and examined using a deep learning-assisted motion capture system. In the control task, right finger CKC measurements were simultaneously evaluated via motion capture and an accelerometer. The right finger CKC with motion capture was significant at the movement frequency peaks or its harmonics over the contralateral hemisphere; the motion-captured CKC was 84.9% similar to that with the accelerometer. The tongue CKC was significant at the movement frequency peaks or its harmonics over both hemispheres. The CKC sources of the tongue were considerably lateral and inferior to those of the finger. Thus, the CKC with deep learning-assisted motion capture can evaluate the functional localization of the tongue SM1.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Língua / Gravação em Vídeo / Processamento de Imagem Assistida por Computador / Mapeamento Encefálico / Magnetoencefalografia / Dedos / Córtex Sensório-Motor / Aprendizado Profundo / Movimento Tipo de estudo: Prognostic_studies Limite: Adult / Female / Humans / Male Idioma: En Revista: Sci Rep Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Língua / Gravação em Vídeo / Processamento de Imagem Assistida por Computador / Mapeamento Encefálico / Magnetoencefalografia / Dedos / Córtex Sensório-Motor / Aprendizado Profundo / Movimento Tipo de estudo: Prognostic_studies Limite: Adult / Female / Humans / Male Idioma: En Revista: Sci Rep Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Japão