Your browser doesn't support javascript.
loading
Roles of miR-592-3p and Its Target Gene, TMEFF1, in the Nucleus Accumbens During Incubation of Morphine Craving.
Xie, Bing; Zhang, Jingjing; Ma, Chunling; Yu, Hailei; Ni, Zhiyu; Cong, Bin; Wen, Di.
Afiliação
  • Xie B; College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Pro
  • Zhang J; College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Pro
  • Ma C; College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Pro
  • Yu H; College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Pro
  • Ni Z; School of Basic Medical Science, Hebei University, Hebei Province, Baoding, PR China.
  • Cong B; College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Pro
  • Wen D; College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Pro
Int J Neuropsychopharmacol ; 25(5): 412-424, 2022 05 27.
Article em En | MEDLINE | ID: mdl-35020881
ABSTRACT

BACKGROUND:

Prolonged forced abstinence from morphine can increase cue-induced cravings for the drug, contributing to a persistent vulnerability to relapse. Previous studies have identified the implications of aberrant microRNA (miRNA) regulation in the pathogenesis of morphine addiction, but the changes in miRNA expression during the incubation of morphine craving are still unknown.

METHODS:

Nucleus accumbens (NAc)-specific altered miRNA transcriptomics was determined in a mouse model of cue-induced incubation of morphine craving following a next-generation sequencing method and verified by RT-qPCR. Bioinformatics analysis was performed to predict the target gene of selected miRNA, and the protein expression of the target gene was detected by western blot. A dual-luciferase assay was performed to confirm the binding sites, and gain- and loss-of-function strategy was applied to understand the mechanism of miRNA and its target gene.

RESULTS:

The miR-592-3p observed to be downregulated in the NAc core was linked to the incubation of morphine craving, and a dual-luciferase assay was performed to confirm the binding sites of miR-592-3p in its target gene, tomoregulin-1 (TMEFF1). Also, gain- and loss-of-function analyses revealed that the inhibition of miR-592-3p expression in the NAc core negatively regulated TMEFF1 expression, thereby enhancing the incubation of morphine craving; however, the overexpression of miR-592-3p in the NAc core resulted in a decreased expression of TMEFF1, thereby reducing the incubation of morphine craving.

CONCLUSION:

Our findings demonstrated that miR-592-3p can improve the incubation of morphine craving by targeting TMEFF1, and thus, it holds a therapeutic potential to inhibit opioid craving.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: MicroRNAs / Fissura / Proteínas de Membrana / Morfina / Proteínas de Neoplasias / Núcleo Accumbens Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Int J Neuropsychopharmacol Assunto da revista: NEUROLOGIA / PSICOFARMACOLOGIA Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: MicroRNAs / Fissura / Proteínas de Membrana / Morfina / Proteínas de Neoplasias / Núcleo Accumbens Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Int J Neuropsychopharmacol Assunto da revista: NEUROLOGIA / PSICOFARMACOLOGIA Ano de publicação: 2022 Tipo de documento: Article