Your browser doesn't support javascript.
loading
ER reductive stress caused by Ero1α S-nitrosation accelerates senescence.
Qiao, Xinhua; Zhang, Yingmin; Ye, Aojun; Zhang, Yini; Xie, Ting; Lv, Zhenyu; Shi, Chang; Wu, Dongli; Chu, Boyu; Wu, Xun; Zhang, Weiqi; Wang, Ping; Liu, Guang-Hui; Wang, Chih-Chen; Wang, Lei; Chen, Chang.
Afiliação
  • Qiao X; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Zhang Y; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Ye A; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Zhang Y; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Xie T; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
  • Lv Z; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Shi C; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Wu D; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; School of Basic Medical Sciences of Southwest Medical University, Luzhou, 646000, China.
  • Chu B; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Wu X; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Zhang W; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
  • Wang P; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Liu GH; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
  • Wang CC; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Wang L; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address: wanglei@ibp.ac.cn.
  • Chen C; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Institute for Brain Disorders, Capital Medical University
Free Radic Biol Med ; 180: 165-178, 2022 02 20.
Article em En | MEDLINE | ID: mdl-35033630
ABSTRACT
Oxidative stress in aging has attracted much attention; however, the role of reductive stress in aging remains largely unknown. Here, we report that the endoplasmic reticulum (ER) undergoes reductive stress during replicative senescence, as shown by specific glutathione and H2O2 fluorescent probes. We constructed an ER-specific reductive stress cell model by ER-specific catalase overexpression and observed accelerated senescent phenotypes accompanied by disrupted proteostasis and a compromised ER unfolded protein response (UPR). Mechanistically, S-nitrosation of the pivotal ER sulfhydryl oxidase Ero1α led to decreased activity, therefore resulting in reductive stress in the ER. Inhibition of inducible nitric oxide synthase decreased the level of Ero1α S-nitrosation and decreased cellular senescence. Moreover, the expression of constitutively active Ero1α restored an oxidizing state in the ER and successfully rescued the senescent phenotypes. Our results uncover a new mechanism of senescence promoted by ER reductive stress and provide proof-of-concept that maintaining the oxidizing power of the ER and organelle-specific precision redox regulation could be valuable future geroprotective strategies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse do Retículo Endoplasmático / Peróxido de Hidrogênio Idioma: En Revista: Free Radic Biol Med Assunto da revista: BIOQUIMICA / MEDICINA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse do Retículo Endoplasmático / Peróxido de Hidrogênio Idioma: En Revista: Free Radic Biol Med Assunto da revista: BIOQUIMICA / MEDICINA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China