Your browser doesn't support javascript.
loading
Nucleus segmentation: towards automated solutions.
Hollandi, Reka; Moshkov, Nikita; Paavolainen, Lassi; Tasnadi, Ervin; Piccinini, Filippo; Horvath, Peter.
Afiliação
  • Hollandi R; Synthetic and Systems Biology Unit, Biological Research Centre (BRC), H-6726, Szeged, Hungary.
  • Moshkov N; Synthetic and Systems Biology Unit, Biological Research Centre (BRC), H-6726, Szeged, Hungary; Doctoral School of Interdisciplinary Medicine, University of Szeged, Szeged, Hungary; Laboratory on AI for Computational Biology, Faculty of Computer Science, HSE University, Moscow, Russia.
  • Paavolainen L; Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, FI-00014 Helsinki, Finland.
  • Tasnadi E; Synthetic and Systems Biology Unit, Biological Research Centre (BRC), H-6726, Szeged, Hungary; Doctoral School of Computer Science, University of Szeged, Szeged, Hungary.
  • Piccinini F; IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", I-47014 Meldola (FC), Italy.
  • Horvath P; Synthetic and Systems Biology Unit, Biological Research Centre (BRC), H-6726, Szeged, Hungary; Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, FI-00014 Helsinki, Finland; Single-Cell Technologies Ltd., H-6726, Szeged, Hungary. Electronic address: horvath.peter@brc.hu
Trends Cell Biol ; 32(4): 295-310, 2022 04.
Article em En | MEDLINE | ID: mdl-35067424
Single nucleus segmentation is a frequent challenge of microscopy image processing, since it is the first step of many quantitative data analysis pipelines. The quality of tracking single cells, extracting features or classifying cellular phenotypes strongly depends on segmentation accuracy. Worldwide competitions have been held, aiming to improve segmentation, and recent years have definitely brought significant improvements: large annotated datasets are now freely available, several 2D segmentation strategies have been extended to 3D, and deep learning approaches have increased accuracy. However, even today, no generally accepted solution and benchmarking platform exist. We review the most recent single-cell segmentation tools, and provide an interactive method browser to select the most appropriate solution.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Microscopia Limite: Humans Idioma: En Revista: Trends Cell Biol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Hungria País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Microscopia Limite: Humans Idioma: En Revista: Trends Cell Biol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Hungria País de publicação: Reino Unido