Your browser doesn't support javascript.
loading
Cellular adaptation of Clostridioides difficile to high salinity encompasses a compatible solute-responsive change in cell morphology.
Michel, Annika-Marisa; Borrero-de Acuña, José Manuel; Molinari, Gabriella; Ünal, Can Murat; Will, Sabine; Derksen, Elisabeth; Barthels, Stefan; Bartram, Wiebke; Schrader, Michel; Rohde, Manfred; Zhang, Hao; Hoffmann, Tamara; Neumann-Schaal, Meina; Bremer, Erhard; Jahn, Dieter.
Afiliação
  • Michel AM; Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
  • Borrero-de Acuña JM; Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.
  • Molinari G; Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
  • Ünal CM; Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.
  • Will S; Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Av. de la Reina Mercedes, no. 6, Sevilla, CP 41012, Spain.
  • Derksen E; Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
  • Barthels S; Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
  • Bartram W; Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
  • Schrader M; Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
  • Rohde M; Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
  • Zhang H; Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.
  • Hoffmann T; Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
  • Neumann-Schaal M; Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.
  • Bremer E; Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
  • Jahn D; Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
Environ Microbiol ; 24(3): 1499-1517, 2022 03.
Article em En | MEDLINE | ID: mdl-35106888
ABSTRACT
Infections by the pathogenic gut bacterium Clostridioides difficile cause severe diarrhoeas up to a toxic megacolon and are currently among the major causes of lethal bacterial infections. Successful bacterial propagation in the gut is strongly associated with the adaptation to changing nutrition-caused environmental conditions; e.g. environmental salt stresses. Concentrations of 350 mM NaCl, the prevailing salinity in the colon, led to significantly reduced growth of C. difficile. Metabolomics of salt-stressed bacteria revealed a major reduction of the central energy generation pathways, including the Stickland-fermentation reactions. No obvious synthesis of compatible solutes was observed up to 24 h of growth. The ensuing limited tolerance to high salinity and absence of compatible solute synthesis might result from an evolutionary adaptation to the exclusive life of C. difficile in the mammalian gut. Addition of the compatible solutes carnitine, glycine-betaine, γ-butyrobetaine, crotonobetaine, homobetaine, proline-betaine and dimethylsulfoniopropionate restored growth (choline and proline failed) under conditions of high salinity. A bioinformatically identified OpuF-type ABC-transporter imported most of the used compatible solutes. A long-term adaptation after 48 h included a shift of the Stickland fermentation-based energy metabolism from the utilization to the accumulation of l-proline and resulted in restored growth. Surprisingly, salt stress resulted in the formation of coccoid C. difficile cells instead of the typical rod-shaped cells, a process reverted by the addition of several compatible solutes. Hence, compatible solute import via OpuF is the major immediate adaptation strategy of C. difficile to high salinity-incurred cellular stress.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Clostridioides difficile / Salinidade Tipo de estudo: Prognostic_studies Idioma: En Revista: Environ Microbiol Assunto da revista: MICROBIOLOGIA / SAUDE AMBIENTAL Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Clostridioides difficile / Salinidade Tipo de estudo: Prognostic_studies Idioma: En Revista: Environ Microbiol Assunto da revista: MICROBIOLOGIA / SAUDE AMBIENTAL Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha