Your browser doesn't support javascript.
loading
Pre-magnetic bamboo biochar cross-linked CaMgAl layered double-hydroxide composite: High-efficiency removal of As(III) and Cd(II) from aqueous solutions and insight into the mechanism of simultaneous purification.
Lyu, Peng; Li, Lianfang; Huang, Xiaoya; Wang, Guanghui; Zhu, Changxiong.
Afiliação
  • Lyu P; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of
  • Li L; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of
  • Huang X; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
  • Wang G; School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, China.
  • Zhu C; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of
Sci Total Environ ; 823: 153743, 2022 Jun 01.
Article em En | MEDLINE | ID: mdl-35151751
ABSTRACT
Trivalent arsenic (As(III)) and divalent cadmium (Cd(II)) contamination in water environment is an urgent issue because of their most toxic physicochemical properties. Herein, the simultaneous purification of As(III) and Cd(II) from aqueous solution was achieved by use of a pre-magnetic Fe modified bamboo biochar that cross-linked CaMgAl layered double-hydroxide composite (Fe-BC@LDH). In a binary system, adsorption equilibrium of As(III) and Cd(II) onto specific sorbent Fe-BC@LDH was reached within 100 and 10 min of contact time under anaerobic conditions, respectively, and the maximum adsorption capacities of As(III) and Cd(II) by Fe-BC@LDH were respectively calculated to be ⁓265.3 and ⁓320.7 mg/g at pH 4.5 and 5- and 14-times than that of unmodified biochar. Moreover, adsorption in a competitive or single system, the sorbent displayed a greater preference for Cd(II). Importantly, the removal of As(III) and Cd(II) onto the composite was more favorable in a binary system due to formation of ternary FeOCdAs bonding configuration as well as the redox transformation of As(III) to As(V), inner-sphere complexation of MOAs/Cd (MFe, Ca, Mg, Al), electrostatic attraction, and co-precipitation of scorodite and hydroxy­iron­cadmium. Furthermore, the nanocomposite was still highly efficient after 5 adsorption cycles. This study demonstrated that the synthesized cost-effective Fe-BC@LDH is a promising candidate for the simultaneous separation of As(III) and Cd(II) from wastewater.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Sasa Idioma: En Revista: Sci Total Environ Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Sasa Idioma: En Revista: Sci Total Environ Ano de publicação: 2022 Tipo de documento: Article