Your browser doesn't support javascript.
loading
SNR-Enhanced, Rapid Electrical Conductivity Mapping Using Echo-Shifted MRI.
Lee, Hyunyeol; Park, Jaeseok.
Afiliação
  • Lee H; School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea.
  • Park J; Graduate School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea.
Tomography ; 8(1): 376-388, 2022 02 05.
Article em En | MEDLINE | ID: mdl-35202196
ABSTRACT
Magnetic resonance electrical impedance tomography (MREIT) permits high-spatial resolution electrical conductivity mapping of biological tissues, and its quantification accuracy hinges on the signal-to-noise ratio (SNR) of the current-induced magnetic flux density (Bz). The purpose of this work was to achieve Bz SNR-enhanced rapid conductivity imaging by developing an echo-shifted steady-state incoherent imaging-based MREIT technique. In the proposed pulse sequence, the free-induction-decay signal is shifted in time over multiple imaging slices, and as a result is exposed to a plurality of injecting current pulses before forming an echo. Thus, the proposed multi-slice echo-shifting strategy allows a high SNR for Bz for a given number of current injections. However, with increasing the time of echo formation, the Bz SNR will also be compromised by T2*-related signal loss. Hence, numerical simulations were performed to evaluate the relationship between the echo-shifting and the Bz SNR, and subsequently to determine the optimal imaging parameters. Experimental studies were conducted to evaluate the effectiveness of the proposed method over conventional spin-echo-based MREIT. Compared with the reference spin-echo MREIT, the proposed echo-shifting-based method improves the efficiency in both data acquisition and current injection while retaining the accuracy of conductivity quantification. The results suggest the feasibility of the proposed MREIT method as a practical means for conductivity mapping.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Imageamento por Ressonância Magnética Idioma: En Revista: Tomography Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Imageamento por Ressonância Magnética Idioma: En Revista: Tomography Ano de publicação: 2022 Tipo de documento: Article