Your browser doesn't support javascript.
loading
Design and Evaluation of Two-Stage Membrane-Separation Processes for Propylene-Propane Mixtures.
Yamaki, Takehiro; Thuy, Nguyen; Hara, Nobuo; Taniguchi, Satoshi; Kataoka, Sho.
Afiliação
  • Yamaki T; Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan.
  • Thuy N; Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan.
  • Hara N; Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan.
  • Taniguchi S; Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan.
  • Kataoka S; Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan.
Membranes (Basel) ; 12(2)2022 Jan 29.
Article em En | MEDLINE | ID: mdl-35207084
ABSTRACT
Propylene is industrially produced in a mixture with propane and generally separated from the mixture via distillation. However, because distillation is an energy-consuming process, a more efficient separation process should be developed to mitigate both carbon dioxide (CO2) emissions and production costs. In this study, a two-stage membrane-separation process was designed, and its CO2 emission and production costs were evaluated. The separation processes were designed to minimize energy consumption using different membrane combinations (two recently developed membranes each). To evaluate the separation processes using various membrane combinations, two indicators, i.e., CO2 emissions and total annual costs (TACs), were estimated based on the process simulation (Pro/II, version 10.1.1) results, including energy consumptions, operation expenditure, and capital expenditure. These results were compared to the distillation processes as benchmarks, and the advantages of the membrane-separation process were discussed. In the comparison, carbon taxes were implemented for assessing these two independent indicators as a single indicator, i.e., TAC with carbon tax. Furthermore, using the same scheme, model membranes were also employed in the two-stage membrane-separation process as case studies of technological forecasts.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Membranes (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Membranes (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Japão