Your browser doesn't support javascript.
loading
Extracellular mechanical forces drive endocardial cell volume decrease during zebrafish cardiac valve morphogenesis.
Vignes, Hélène; Vagena-Pantoula, Christina; Prakash, Mangal; Fukui, Hajime; Norden, Caren; Mochizuki, Naoki; Jug, Florian; Vermot, Julien.
Afiliação
  • Vignes H; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U1258 and Université de Strasbourg, Strasbourg, Illkirch, France.
  • Vagena-Pantoula C; Department of Bioengineering, Imperial College London, London, UK.
  • Prakash M; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany.
  • Fukui H; Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
  • Norden C; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Instituto Gulbenkian de Ciência, Oeiras, Portugal.
  • Mochizuki N; Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
  • Jug F; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Fondazione Human Technopole, Milan, Italy.
  • Vermot J; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U1258 and Université de Strasbourg, Strasbourg, Illkirch, France; Department of Bioengineering, Imperial College Lon
Dev Cell ; 57(5): 598-609.e5, 2022 03 14.
Article em En | MEDLINE | ID: mdl-35245444
ABSTRACT
Organ morphogenesis involves dynamic changes of tissue properties while cells adapt to their mechanical environment through mechanosensitive pathways. How mechanical cues influence cell behaviors during morphogenesis remains unclear. Here, we studied the formation of the zebrafish atrioventricular canal (AVC) where cardiac valves develop. We show that the AVC forms within a zone of tissue convergence associated with the increased activation of the actomyosin meshwork and cell-orientation changes. We demonstrate that tissue convergence occurs with a reduction of cell volume triggered by mechanical forces and the mechanosensitive channel TRPP2/TRPV4. Finally, we show that the extracellular matrix component hyaluronic acid controls cell volume changes. Together, our data suggest that multiple force-sensitive signaling pathways converge to modulate cell volume. We conclude that cell volume reduction is a key cellular feature activated by mechanotransduction during cardiovascular morphogenesis. This work further identifies how mechanical forces and extracellular matrix influence tissue remodeling in developing organs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Proteínas de Peixe-Zebra Limite: Animals Idioma: En Revista: Dev Cell Assunto da revista: EMBRIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Proteínas de Peixe-Zebra Limite: Animals Idioma: En Revista: Dev Cell Assunto da revista: EMBRIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França