Your browser doesn't support javascript.
loading
GIRK channel as a versatile regulator of neurotransmitter release via L-type Ca2+ channel-dependent mechanism in the neuromuscular junction.
Tsentsevitsky, Andrei N; Khaziev, Eduard F; Kovyazina, Irina V; Petrov, Alexey M.
Afiliação
  • Tsentsevitsky AN; Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC "Kazan Scientific Center of RAS", P.o. Box 30, 420111, Kazan, Russia.
  • Khaziev EF; Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC "Kazan Scientific Center of RAS", P.o. Box 30, 420111, Kazan, Russia.
  • Kovyazina IV; Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC "Kazan Scientific Center of RAS", P.o. Box 30, 420111, Kazan, Russia; Kazan State Medical University, Butlerov St., 49, 420008, Kazan, Russia. Electronic address: i.kovyazina@kazangmu.ru.
  • Petrov AM; Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC "Kazan Scientific Center of RAS", P.o. Box 30, 420111, Kazan, Russia; Kazan State Medical University, Butlerov St., 49, 420008, Kazan, Russia.
Neuropharmacology ; 209: 109021, 2022 05 15.
Article em En | MEDLINE | ID: mdl-35245509
G protein-gated inwardly rectifying potassium (GIRK) channels are one of the main regulators of neuronal excitability. Activation of GIRK channels in the CNS usually leads to postsynaptic inhibition. However, the function of GIRK channels in the presynaptic processes, notably neurotransmitter release form motor nerve terminals, is yet to be comprehensively understood. Here, using electrophysiological and fluorescent approaches, the role of GIRK channels in neurotransmitter release from frog motor nerve terminals was studied. We found that the inhibition of GIRK channels with nanomolar tertiapin-Q synchronized exocytosis events with action potential but suppressed spontaneous and evoked neurotransmitter release, as well as Ca2+ transient and membrane permeability for K+. The action of GIRK channel inhibition on evoked neurotransmission was prevented by selective antagonist of voltage-gated Ca2+ channels of L-type. Furthermore, the effects of muscarinic acetylcholine receptor activation on neurotransmitter release, Ca2+ transient and K+ channel activity were markedly modulated by inhibition of GIRK channels. Thus, at the motor nerve terminals GIRK channels can regulate timing of neurotransmitter release and be a positive modulator of synaptic vesicle exocytosis acting partially via L-type Ca2+ channels. In addition, GIRK channels are key players in a feedback control of neurotransmitter release by muscarinic acetylcholine receptors.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G / Junção Neuromuscular Idioma: En Revista: Neuropharmacology Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Federação Russa País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G / Junção Neuromuscular Idioma: En Revista: Neuropharmacology Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Federação Russa País de publicação: Reino Unido