Your browser doesn't support javascript.
loading
Hybridized Exciton-Photon-Phonon States in a Transition Metal Dichalcogenide van der Waals Heterostructure Microcavity.
Li, Donghai; Shan, Hangyong; Rupprecht, Christoph; Knopf, Heiko; Watanabe, Kenji; Taniguchi, Takashi; Qin, Ying; Tongay, Sefaattin; Nuß, Matthias; Schröder, Sven; Eilenberger, Falk; Höfling, Sven; Schneider, Christian; Brixner, Tobias.
Afiliação
  • Li D; Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
  • Shan H; University of Science and Technology of China, 230026 Hefei, China.
  • Rupprecht C; Institute of Physics, University of Oldenburg, D-26129 Oldenburg, Germany.
  • Knopf H; Technische Physik and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
  • Watanabe K; Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University, Albert-Einstein-Straße 15, 07745 Jena, Germany.
  • Taniguchi T; Fraunhofer-Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Straße 7, 07745 Jena, Germany.
  • Qin Y; Max Planck School of Photonics, Albert-Einstein-Straße 7, 07745 Jena, Germany.
  • Tongay S; Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
  • Nuß M; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
  • Schröder S; Materials Science and Engineering, School of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, USA.
  • Eilenberger F; Materials Science and Engineering, School of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, USA.
  • Höfling S; Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
  • Schneider C; Fraunhofer-Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Straße 7, 07745 Jena, Germany.
  • Brixner T; Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University, Albert-Einstein-Straße 15, 07745 Jena, Germany.
Phys Rev Lett ; 128(8): 087401, 2022 Feb 25.
Article em En | MEDLINE | ID: mdl-35275663
ABSTRACT
Excitons in atomically thin transition-metal dichalcogenides (TMDs) have been established as an attractive platform to explore polaritonic physics, owing to their enormous binding energies and giant oscillator strength. Basic spectral features of exciton polaritons in TMD microcavities, thus far, were conventionally explained via two-coupled-oscillator models. This ignores, however, the impact of phonons on the polariton energy structure. Here we establish and quantify the threefold coupling between excitons, cavity photons, and phonons. For this purpose, we employ energy-momentum-resolved photoluminescence and spatially resolved coherent two-dimensional spectroscopy to investigate the spectral properties of a high-quality-factor microcavity with an embedded WSe_{2} van der Waals heterostructure at room temperature. Our approach reveals a rich multibranch structure which thus far has not been captured in previous experiments. Simulation of the data reveals hybridized exciton-photon-phonon states, providing new physical insight into the exciton polariton system based on layered TMDs.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Phys Rev Lett Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Phys Rev Lett Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha
...