Your browser doesn't support javascript.
loading
Augmenting Imaging Biomarker Performance with Blood-Based Gene Expression Levels for Predicting Alzheimer's Disease Progression.
Dobromyslin, Vitaly I; Megherbi, Dalila B.
Afiliação
  • Dobromyslin VI; Center for Computer Machine/Human Intelligence Networking and Distributed Systems, University of Massachusetts, Lowell, MA, USA.
  • Megherbi DB; Center for Computer Machine/Human Intelligence Networking and Distributed Systems, University of Massachusetts, Lowell, MA, USA.
J Alzheimers Dis ; 87(2): 583-594, 2022.
Article em En | MEDLINE | ID: mdl-35311706
ABSTRACT

BACKGROUND:

Structural brain imaging metrics and gene expression biomarkers have previously been used for Alzheimer's disease (AD) diagnosis and prognosis, but none of these studies explored integration of imaging and gene expression biomarkers for predicting mild cognitive impairment (MCI)-to-AD conversion 1-2 years into the future.

OBJECTIVE:

We investigated advantages of combining gene expression and structural brain imaging features for predicting MCI-to-AD conversion. Selection of the differentially expressed genes (DEGs) for classifying cognitively normal (CN) controls and AD patients was benchmarked against previously reported results.

METHODS:

The current work proposes integrating brain imaging and blood gene expression data from two public datasets (ADNI and ANM) to predict MCI-to-AD conversion. A novel pipeline for combining gene expression data from multiple platforms is proposed and evaluated in the two independents patient cohorts.

RESULTS:

Combining DEGs and imaging biomarkers for predicting MCI-to-AD conversion yielded 0.832-0.876 receiver operating characteristic (ROC) area under the curve (AUC), which exceeded the 0.808-0.840 AUC from using the imaging features alone. With using only three DEGs, the CN versus AD predictive model achieved 0.718, 0.858, and 0.873 cross-validation AUC for the ADNI, ANM1, and ANM2 datasets.

CONCLUSION:

For the first time we show that combining gene expression and imaging biomarkers yields better predictive performance than using imaging metrics alone. A novel pipeline for combining gene expression data from multiple platforms is proposed and evaluated to produce consistent results in the two independents patient cohorts. Using an improved feature selection, we show that predictive models with fewer gene expression probes can achieve competitive performance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Alzheimer / Disfunção Cognitiva Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Alzheimers Dis Assunto da revista: GERIATRIA / NEUROLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: HOLANDA / HOLLAND / NETHERLANDS / NL / PAISES BAJOS / THE NETHERLANDS

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Alzheimer / Disfunção Cognitiva Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Alzheimers Dis Assunto da revista: GERIATRIA / NEUROLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: HOLANDA / HOLLAND / NETHERLANDS / NL / PAISES BAJOS / THE NETHERLANDS