Your browser doesn't support javascript.
loading
An integrated risk model stratifying seizure risk following brain tumor resection among seizure-naive patients without antiepileptic prophylaxis.
Jin, Michael C; Parker, Jonathon J; Prolo, Laura M; Wu, Adela; Halpern, Casey H; Li, Gordon; Ratliff, John K; Han, Summer S; Skirboll, Stephen L; Grant, Gerald A.
Afiliação
  • Jin MC; 1Department of Neurosurgery, Stanford University School of Medicine, Stanford.
  • Parker JJ; 1Department of Neurosurgery, Stanford University School of Medicine, Stanford.
  • Prolo LM; 1Department of Neurosurgery, Stanford University School of Medicine, Stanford.
  • Wu A; 2Lucile Packard Children's Hospital, Stanford; and.
  • Halpern CH; 1Department of Neurosurgery, Stanford University School of Medicine, Stanford.
  • Li G; 1Department of Neurosurgery, Stanford University School of Medicine, Stanford.
  • Ratliff JK; 1Department of Neurosurgery, Stanford University School of Medicine, Stanford.
  • Han SS; 1Department of Neurosurgery, Stanford University School of Medicine, Stanford.
  • Skirboll SL; 1Department of Neurosurgery, Stanford University School of Medicine, Stanford.
  • Grant GA; 1Department of Neurosurgery, Stanford University School of Medicine, Stanford.
Neurosurg Focus ; 52(4): E3, 2022 04.
Article em En | MEDLINE | ID: mdl-35364580
OBJECTIVE: The natural history of seizure risk after brain tumor resection is not well understood. Identifying seizure-naive patients at highest risk for postoperative seizure events remains a clinical need. In this study, the authors sought to develop a predictive modeling strategy for anticipating postcraniotomy seizures after brain tumor resection. METHODS: The IBM Watson Health MarketScan Claims Database was canvassed for antiepileptic drug (AED)- and seizure-naive patients who underwent brain tumor resection (2007-2016). The primary event of interest was short-term seizure risk (within 90 days postdischarge). The secondary event of interest was long-term seizure risk during the follow-up period. To model early-onset and long-term postdischarge seizure risk, a penalized logistic regression classifier and multivariable Cox regression model, respectively, were built, which integrated patient-, tumor-, and hospitalization-specific features. To compare empirical seizure rates, equally sized cohort tertiles were created and labeled as low risk, medium risk, and high risk. RESULTS: Of 5470 patients, 983 (18.0%) had a postdischarge-coded seizure event. The integrated binary classification approach for predicting early-onset seizures outperformed models using feature subsets (area under the curve [AUC] = 0.751, hospitalization features only AUC = 0.667, patient features only AUC = 0.603, and tumor features only AUC = 0.694). Held-out validation patient cases that were predicted by the integrated model to have elevated short-term risk more frequently developed seizures within 90 days of discharge (24.1% high risk vs 3.8% low risk, p < 0.001). Compared with those in the low-risk tertile by the long-term seizure risk model, patients in the medium-risk and high-risk tertiles had 2.13 (95% CI 1.45-3.11) and 6.24 (95% CI 4.40-8.84) times higher long-term risk for postdischarge seizures. Only patients predicted as high risk developed status epilepticus within 90 days of discharge (1.7% high risk vs 0% low risk, p = 0.003). CONCLUSIONS: The authors have presented a risk-stratified model that accurately predicted short- and long-term seizure risk in patients who underwent brain tumor resection, which may be used to stratify future study of postoperative AED prophylaxis in highest-risk patient subpopulations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Encefálicas / Anticonvulsivantes Tipo de estudo: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Neurosurg Focus Assunto da revista: NEUROCIRURGIA Ano de publicação: 2022 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Encefálicas / Anticonvulsivantes Tipo de estudo: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Neurosurg Focus Assunto da revista: NEUROCIRURGIA Ano de publicação: 2022 Tipo de documento: Article País de publicação: Estados Unidos