Your browser doesn't support javascript.
loading
Impact of RAFT chain transfer agents on the polymeric shell density of magneto-fluorescent nanoparticles and their cellular uptake.
Blondy, Thibaut; Poly, Julien; Linot, Camille; Boucard, Joanna; Allard-Vannier, Emilie; Nedellec, Steven; Hulin, Phillipe; Hénoumont, Céline; Larbanoix, Lionel; Muller, Robert N; Laurent, Sophie; Ishow, Eléna; Blanquart, Christophe.
Afiliação
  • Blondy T; Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France. christophe.blanquart@inserm.fr.
  • Poly J; IS2M-UMR CNRS 7361, Université de Haute Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France.
  • Linot C; Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France. christophe.blanquart@inserm.fr.
  • Boucard J; Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France. christophe.blanquart@inserm.fr.
  • Allard-Vannier E; Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France. elena.ishow@univ-nantes.fr.
  • Nedellec S; EA 6295 'Nanomédicaments et Nanosondes', Université de Tours, Tours, F-37200, France.
  • Hulin P; Nantes Université, INSERM, UMS 016, CNRS, UMS 3556, F-44000 Nantes, France.
  • Hénoumont C; Nantes Université, INSERM, UMS 016, CNRS, UMS 3556, F-44000 Nantes, France.
  • Larbanoix L; Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, B-7000 Mons, Belgium.
  • Muller RN; Center for Microscopy and Molecular Imaging, 8 rue Adrienne Bolland à Gosselies, 6041 Gosselies, Belgium.
  • Laurent S; Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, B-7000 Mons, Belgium.
  • Ishow E; Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, B-7000 Mons, Belgium.
  • Blanquart C; Center for Microscopy and Molecular Imaging, 8 rue Adrienne Bolland à Gosselies, 6041 Gosselies, Belgium.
Nanoscale ; 14(15): 5884-5898, 2022 Apr 14.
Article em En | MEDLINE | ID: mdl-35373226
ABSTRACT
The impact of nanoparticle surface chemistry on cell interactions and especially cell uptake has become evident over the last few years in nanomedicine. Since PEG polymers have proved to be ideal tools for attaining stealthiness and favor escape from the in vivo mononuclear phagocytotic system, the accurate control of their geometry is of primary importance and can be achieved through reversible addition-fragmentation transfer (RAFT) polymerization. In this study, we demonstrate that the residual groups of the chain transfer agents (CTAs) introduced in the main chain exert a significant impact on the cellular internalization of functionalized nanoparticles. High-resolution magic angle spinning 1H NMR spectroscopy and fluorescence spectroscopy permitted by the magneto-fluorescence properties of nanoassemblies (NAs) revealed the compaction of the PEG comb-like shell incorporating CTAs with a long alkyl chain, without changing the overall surface potential. As a consequence of the capability of alkyl units to self-assemble at the NA surface while hardly contributing more than 0.5% to the total polyelectrolyte weight, denser PEGylated NAs showed notably less internalization in all cells of the tumor microenvironment (tumor cells, macrophages and healthy cells). Interestingly, such differentiated uptake is also observed between pro-inflammatory M1-like and immunosuppressive M2-like macrophages, with the latter more efficiently phagocytizing NAs coated with a less compact PEGylated shell. In contrast, the NA diffusion inside multicellular spheroids, used to mimic solid tumors, appeared to be independent of the NA coating. These results provide a novel effort-saving approach where the sole variation of the chemical nature of CTAs in RAFT PEGylated polymers strikingly modulate the cell uptake of nanoparticles upon the organization of their surface coating and open the pathway toward selectively addressing macrophage populations for cancer immunotherapy.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Nanopartículas Idioma: En Revista: Nanoscale Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Nanopartículas Idioma: En Revista: Nanoscale Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França