Orderly disorder in magic-angle twisted trilayer graphene.
Science
; 376(6589): 193-199, 2022 04 08.
Article
em En
| MEDLINE
| ID: mdl-35389784
Magic-angle twisted trilayer graphene (TTG) has recently emerged as a platform to engineer strongly correlated flat bands. We reveal the normal-state structural and electronic properties of TTG using low-temperature scanning tunneling microscopy at twist angles for which superconductivity has been observed. Real trilayer samples undergo a strong reconstruction of the moiré lattice, which locks layers into near-magic-angle, mirror symmetric domains comparable in size with the superconducting coherence length. This relaxation introduces an array of localized twist-angle faults, termed twistons and moiré solitons, whose electronic structure deviates strongly from the background regions, leading to a doping-dependent, spatially granular electronic landscape. The Fermi-level density of states is maximally uniform at dopings for which superconductivity has been observed in transport measurements.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Science
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Estados Unidos